Loading…

Engineering alternate cooperative-communications in the lactose repressor protein scaffold

To expand our understanding of the hallmarks of allosteric control we used directed-evolution to engineer alternate cooperative communication in the lactose repressor protein (LacI) scaffold. Starting with an Is type LacI mutant D88A (i.e. a LacI variant that is insensitive to the exogenous ligand i...

Full description

Saved in:
Bibliographic Details
Published in:Protein engineering, design and selection design and selection, 2013-06, Vol.26 (6), p.433-443
Main Authors: Meyer, Sarai, Ramot, Roee, Kishore Inampudi, Krishna, Luo, Beibei, Lin, Chenyu, Amere, Swathi, Wilson, Corey J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c435t-fc60914d54c3c2f9921ff4e620a6ea114e8c7afe594419c6fe3c09740eb098313
cites cdi_FETCH-LOGICAL-c435t-fc60914d54c3c2f9921ff4e620a6ea114e8c7afe594419c6fe3c09740eb098313
container_end_page 443
container_issue 6
container_start_page 433
container_title Protein engineering, design and selection
container_volume 26
creator Meyer, Sarai
Ramot, Roee
Kishore Inampudi, Krishna
Luo, Beibei
Lin, Chenyu
Amere, Swathi
Wilson, Corey J.
description To expand our understanding of the hallmarks of allosteric control we used directed-evolution to engineer alternate cooperative communication in the lactose repressor protein (LacI) scaffold. Starting with an Is type LacI mutant D88A (i.e. a LacI variant that is insensitive to the exogenous ligand isopropyl-β-d-thiogalactoside (IPTG) and remains bound to operator DNA, + or −IPTG) we used error-prone polymerase chain reaction to introduce compensatory mutations to restore modulated DNA binding function to the allosterically ‘dead’ IsD88A background. Five variants were generated, three variants (C4, C32 and C80) with wild-type like function and two co-repressor variants (C101 and C140) that are functionally inverted. To better resolve the residues that define new allosteric networks in the LacI variants, we conducted mutational tolerance analysis via saturation mutagenesis at each of the evolved positions to assess sensitivity to mutation—a hallmark of allosteric residues. To better understand the physicochemical bases of alternate allosteric function, variant LacIC80 was characterized to assess IPTG ligand binding at equilibrium, kinetically using stopped-flow, and via isothermal titration calorimetry. These data suggest that the conferred modulated DNA binding function observed for LacIC80, while thermodynamically similar to wild-type LacI, is mechanistically different from the wild-type repressor, suggesting a new allosteric network and communication route.
doi_str_mv 10.1093/protein/gzt013
format article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_protein_gzt013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/protein/gzt013</oup_id><sourcerecordid>10.1093/protein/gzt013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-fc60914d54c3c2f9921ff4e620a6ea114e8c7afe594419c6fe3c09740eb098313</originalsourceid><addsrcrecordid>eNqFkL1PwzAUxC0EoqWwMiKvDGn9YiepR1SVD6kSCywskes-F6PEjmwHCf56glK6Mr170u9OpyPkGtgcmOSLLviE1i3234kBPyFTqARkgxSnR52XE3IR4wdjeVkBnJNJzotlVeR8St7Wbm8dYrBuT1WTMDiVkGrvOwwq2U_MtG_b3lk9fN5Fah1N70gbpZOPSAN2AWP0gR6q0KiVMb7ZXZIzo5qIV4c7I6_365fVY7Z5fnha3W0yLXiRMqNLJkHsCqG5zo2UORgjsMyZKlEBCFzqShkspBAgdWmQayYrwXDL5JIDn5H5mKuDjzGgqbtgWxW-amD170j1oVk9jjQYbkZD129b3B3xv1UG4HYEfN_9F_YDTlh2RA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Engineering alternate cooperative-communications in the lactose repressor protein scaffold</title><source>Oxford Journals Online</source><creator>Meyer, Sarai ; Ramot, Roee ; Kishore Inampudi, Krishna ; Luo, Beibei ; Lin, Chenyu ; Amere, Swathi ; Wilson, Corey J.</creator><creatorcontrib>Meyer, Sarai ; Ramot, Roee ; Kishore Inampudi, Krishna ; Luo, Beibei ; Lin, Chenyu ; Amere, Swathi ; Wilson, Corey J.</creatorcontrib><description>To expand our understanding of the hallmarks of allosteric control we used directed-evolution to engineer alternate cooperative communication in the lactose repressor protein (LacI) scaffold. Starting with an Is type LacI mutant D88A (i.e. a LacI variant that is insensitive to the exogenous ligand isopropyl-β-d-thiogalactoside (IPTG) and remains bound to operator DNA, + or −IPTG) we used error-prone polymerase chain reaction to introduce compensatory mutations to restore modulated DNA binding function to the allosterically ‘dead’ IsD88A background. Five variants were generated, three variants (C4, C32 and C80) with wild-type like function and two co-repressor variants (C101 and C140) that are functionally inverted. To better resolve the residues that define new allosteric networks in the LacI variants, we conducted mutational tolerance analysis via saturation mutagenesis at each of the evolved positions to assess sensitivity to mutation—a hallmark of allosteric residues. To better understand the physicochemical bases of alternate allosteric function, variant LacIC80 was characterized to assess IPTG ligand binding at equilibrium, kinetically using stopped-flow, and via isothermal titration calorimetry. These data suggest that the conferred modulated DNA binding function observed for LacIC80, while thermodynamically similar to wild-type LacI, is mechanistically different from the wild-type repressor, suggesting a new allosteric network and communication route.</description><identifier>ISSN: 1741-0126</identifier><identifier>EISSN: 1741-0134</identifier><identifier>DOI: 10.1093/protein/gzt013</identifier><identifier>PMID: 23587523</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Allosteric Regulation ; Amino Acid Sequence ; Directed Molecular Evolution ; Escherichia coli - genetics ; Isopropyl Thiogalactoside - chemistry ; Kinetics ; Lac Repressors - chemistry ; Lac Repressors - genetics ; Lac Repressors - metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Engineering - methods ; Protein Stability ; Sequence Alignment ; Thermodynamics</subject><ispartof>Protein engineering, design and selection, 2013-06, Vol.26 (6), p.433-443</ispartof><rights>The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-fc60914d54c3c2f9921ff4e620a6ea114e8c7afe594419c6fe3c09740eb098313</citedby><cites>FETCH-LOGICAL-c435t-fc60914d54c3c2f9921ff4e620a6ea114e8c7afe594419c6fe3c09740eb098313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23587523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meyer, Sarai</creatorcontrib><creatorcontrib>Ramot, Roee</creatorcontrib><creatorcontrib>Kishore Inampudi, Krishna</creatorcontrib><creatorcontrib>Luo, Beibei</creatorcontrib><creatorcontrib>Lin, Chenyu</creatorcontrib><creatorcontrib>Amere, Swathi</creatorcontrib><creatorcontrib>Wilson, Corey J.</creatorcontrib><title>Engineering alternate cooperative-communications in the lactose repressor protein scaffold</title><title>Protein engineering, design and selection</title><addtitle>Protein Eng Des Sel</addtitle><description>To expand our understanding of the hallmarks of allosteric control we used directed-evolution to engineer alternate cooperative communication in the lactose repressor protein (LacI) scaffold. Starting with an Is type LacI mutant D88A (i.e. a LacI variant that is insensitive to the exogenous ligand isopropyl-β-d-thiogalactoside (IPTG) and remains bound to operator DNA, + or −IPTG) we used error-prone polymerase chain reaction to introduce compensatory mutations to restore modulated DNA binding function to the allosterically ‘dead’ IsD88A background. Five variants were generated, three variants (C4, C32 and C80) with wild-type like function and two co-repressor variants (C101 and C140) that are functionally inverted. To better resolve the residues that define new allosteric networks in the LacI variants, we conducted mutational tolerance analysis via saturation mutagenesis at each of the evolved positions to assess sensitivity to mutation—a hallmark of allosteric residues. To better understand the physicochemical bases of alternate allosteric function, variant LacIC80 was characterized to assess IPTG ligand binding at equilibrium, kinetically using stopped-flow, and via isothermal titration calorimetry. These data suggest that the conferred modulated DNA binding function observed for LacIC80, while thermodynamically similar to wild-type LacI, is mechanistically different from the wild-type repressor, suggesting a new allosteric network and communication route.</description><subject>Allosteric Regulation</subject><subject>Amino Acid Sequence</subject><subject>Directed Molecular Evolution</subject><subject>Escherichia coli - genetics</subject><subject>Isopropyl Thiogalactoside - chemistry</subject><subject>Kinetics</subject><subject>Lac Repressors - chemistry</subject><subject>Lac Repressors - genetics</subject><subject>Lac Repressors - metabolism</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Protein Binding</subject><subject>Protein Engineering - methods</subject><subject>Protein Stability</subject><subject>Sequence Alignment</subject><subject>Thermodynamics</subject><issn>1741-0126</issn><issn>1741-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAUxC0EoqWwMiKvDGn9YiepR1SVD6kSCywskes-F6PEjmwHCf56glK6Mr170u9OpyPkGtgcmOSLLviE1i3234kBPyFTqARkgxSnR52XE3IR4wdjeVkBnJNJzotlVeR8St7Wbm8dYrBuT1WTMDiVkGrvOwwq2U_MtG_b3lk9fN5Fah1N70gbpZOPSAN2AWP0gR6q0KiVMb7ZXZIzo5qIV4c7I6_365fVY7Z5fnha3W0yLXiRMqNLJkHsCqG5zo2UORgjsMyZKlEBCFzqShkspBAgdWmQayYrwXDL5JIDn5H5mKuDjzGgqbtgWxW-amD170j1oVk9jjQYbkZD129b3B3xv1UG4HYEfN_9F_YDTlh2RA</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Meyer, Sarai</creator><creator>Ramot, Roee</creator><creator>Kishore Inampudi, Krishna</creator><creator>Luo, Beibei</creator><creator>Lin, Chenyu</creator><creator>Amere, Swathi</creator><creator>Wilson, Corey J.</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130601</creationdate><title>Engineering alternate cooperative-communications in the lactose repressor protein scaffold</title><author>Meyer, Sarai ; Ramot, Roee ; Kishore Inampudi, Krishna ; Luo, Beibei ; Lin, Chenyu ; Amere, Swathi ; Wilson, Corey J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-fc60914d54c3c2f9921ff4e620a6ea114e8c7afe594419c6fe3c09740eb098313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Allosteric Regulation</topic><topic>Amino Acid Sequence</topic><topic>Directed Molecular Evolution</topic><topic>Escherichia coli - genetics</topic><topic>Isopropyl Thiogalactoside - chemistry</topic><topic>Kinetics</topic><topic>Lac Repressors - chemistry</topic><topic>Lac Repressors - genetics</topic><topic>Lac Repressors - metabolism</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Protein Binding</topic><topic>Protein Engineering - methods</topic><topic>Protein Stability</topic><topic>Sequence Alignment</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, Sarai</creatorcontrib><creatorcontrib>Ramot, Roee</creatorcontrib><creatorcontrib>Kishore Inampudi, Krishna</creatorcontrib><creatorcontrib>Luo, Beibei</creatorcontrib><creatorcontrib>Lin, Chenyu</creatorcontrib><creatorcontrib>Amere, Swathi</creatorcontrib><creatorcontrib>Wilson, Corey J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Protein engineering, design and selection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, Sarai</au><au>Ramot, Roee</au><au>Kishore Inampudi, Krishna</au><au>Luo, Beibei</au><au>Lin, Chenyu</au><au>Amere, Swathi</au><au>Wilson, Corey J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering alternate cooperative-communications in the lactose repressor protein scaffold</atitle><jtitle>Protein engineering, design and selection</jtitle><addtitle>Protein Eng Des Sel</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>26</volume><issue>6</issue><spage>433</spage><epage>443</epage><pages>433-443</pages><issn>1741-0126</issn><eissn>1741-0134</eissn><abstract>To expand our understanding of the hallmarks of allosteric control we used directed-evolution to engineer alternate cooperative communication in the lactose repressor protein (LacI) scaffold. Starting with an Is type LacI mutant D88A (i.e. a LacI variant that is insensitive to the exogenous ligand isopropyl-β-d-thiogalactoside (IPTG) and remains bound to operator DNA, + or −IPTG) we used error-prone polymerase chain reaction to introduce compensatory mutations to restore modulated DNA binding function to the allosterically ‘dead’ IsD88A background. Five variants were generated, three variants (C4, C32 and C80) with wild-type like function and two co-repressor variants (C101 and C140) that are functionally inverted. To better resolve the residues that define new allosteric networks in the LacI variants, we conducted mutational tolerance analysis via saturation mutagenesis at each of the evolved positions to assess sensitivity to mutation—a hallmark of allosteric residues. To better understand the physicochemical bases of alternate allosteric function, variant LacIC80 was characterized to assess IPTG ligand binding at equilibrium, kinetically using stopped-flow, and via isothermal titration calorimetry. These data suggest that the conferred modulated DNA binding function observed for LacIC80, while thermodynamically similar to wild-type LacI, is mechanistically different from the wild-type repressor, suggesting a new allosteric network and communication route.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>23587523</pmid><doi>10.1093/protein/gzt013</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1741-0126
ispartof Protein engineering, design and selection, 2013-06, Vol.26 (6), p.433-443
issn 1741-0126
1741-0134
language eng
recordid cdi_crossref_primary_10_1093_protein_gzt013
source Oxford Journals Online
subjects Allosteric Regulation
Amino Acid Sequence
Directed Molecular Evolution
Escherichia coli - genetics
Isopropyl Thiogalactoside - chemistry
Kinetics
Lac Repressors - chemistry
Lac Repressors - genetics
Lac Repressors - metabolism
Ligands
Models, Molecular
Molecular Sequence Data
Protein Binding
Protein Engineering - methods
Protein Stability
Sequence Alignment
Thermodynamics
title Engineering alternate cooperative-communications in the lactose repressor protein scaffold
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A25%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20alternate%20cooperative-communications%20in%20the%20lactose%20repressor%20protein%20scaffold&rft.jtitle=Protein%20engineering,%20design%20and%20selection&rft.au=Meyer,%20Sarai&rft.date=2013-06-01&rft.volume=26&rft.issue=6&rft.spage=433&rft.epage=443&rft.pages=433-443&rft.issn=1741-0126&rft.eissn=1741-0134&rft_id=info:doi/10.1093/protein/gzt013&rft_dat=%3Coup_cross%3E10.1093/protein/gzt013%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-fc60914d54c3c2f9921ff4e620a6ea114e8c7afe594419c6fe3c09740eb098313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/23587523&rft_oup_id=10.1093/protein/gzt013&rfr_iscdi=true