Loading…

The centre of a finitely generated strongly verbally closed group is almost always pure

ABSTRACT The assertion in the title implies that many interesting groups (for example, all non-abelian braid groups or $\textbf{SL}_{100}(\mathbb{Z})$) are not strongly verbally closed, i. e., they embed into some finitely generated groups as verbally closed subgroups, which are not retracts.

Saved in:
Bibliographic Details
Published in:Quarterly journal of mathematics 2024-08, Vol.75 (3), p.1149-1156
Main Authors: Denissov, Filipp D, Klyachko, Anton A
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c195t-82f76fb5d785a0ab7a6a36ad5e0591c58ed80e0d4539b09389aa2c14eb88c5913
container_end_page 1156
container_issue 3
container_start_page 1149
container_title Quarterly journal of mathematics
container_volume 75
creator Denissov, Filipp D
Klyachko, Anton A
description ABSTRACT The assertion in the title implies that many interesting groups (for example, all non-abelian braid groups or $\textbf{SL}_{100}(\mathbb{Z})$) are not strongly verbally closed, i. e., they embed into some finitely generated groups as verbally closed subgroups, which are not retracts.
doi_str_mv 10.1093/qmath/haae038
format article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_qmath_haae038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/qmath/haae038</oup_id><sourcerecordid>10.1093/qmath/haae038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c195t-82f76fb5d785a0ab7a6a36ad5e0591c58ed80e0d4539b09389aa2c14eb88c5913</originalsourceid><addsrcrecordid>eNqFkD1PAzEMhiMEEqUwsmdkOeo0l1xuRBVQpEosRYwnX873ge6jJCmo_55AuzO9lv3Ish_GbgXcC8jl4nPA0C5aRAJpzthMpDpNpEmzczYDkDJRGvQlu_L-A0Do1GQz9r5tiVsagyM-1Rx53Y1doP7AGxrJYaCK--CmsYmtL3Il9rGw_eTjoHHTfsc7z7EfJh9ifOPB893e0TW7qLH3dHPKOXt7etyu1snm9fll9bBJrMhVSMyyznRdqiozCgHLDDVKjZUiULmwylBlgKBKlczL-KPJEZdWpFQaYyMh5yw57rVu8t5RXexcN6A7FAKKXyvFn5XiZCXyd0c-Xv4P-gM5JmbY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The centre of a finitely generated strongly verbally closed group is almost always pure</title><source>Oxford Journals Online</source><creator>Denissov, Filipp D ; Klyachko, Anton A</creator><creatorcontrib>Denissov, Filipp D ; Klyachko, Anton A</creatorcontrib><description>ABSTRACT The assertion in the title implies that many interesting groups (for example, all non-abelian braid groups or $\textbf{SL}_{100}(\mathbb{Z})$) are not strongly verbally closed, i. e., they embed into some finitely generated groups as verbally closed subgroups, which are not retracts.</description><identifier>ISSN: 0033-5606</identifier><identifier>EISSN: 1464-3847</identifier><identifier>DOI: 10.1093/qmath/haae038</identifier><language>eng</language><publisher>UK: Oxford University Press</publisher><ispartof>Quarterly journal of mathematics, 2024-08, Vol.75 (3), p.1149-1156</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site–for further information please contact journals.permissions@oup.com. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c195t-82f76fb5d785a0ab7a6a36ad5e0591c58ed80e0d4539b09389aa2c14eb88c5913</cites><orcidid>0009-0005-6066-0961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Denissov, Filipp D</creatorcontrib><creatorcontrib>Klyachko, Anton A</creatorcontrib><title>The centre of a finitely generated strongly verbally closed group is almost always pure</title><title>Quarterly journal of mathematics</title><description>ABSTRACT The assertion in the title implies that many interesting groups (for example, all non-abelian braid groups or $\textbf{SL}_{100}(\mathbb{Z})$) are not strongly verbally closed, i. e., they embed into some finitely generated groups as verbally closed subgroups, which are not retracts.</description><issn>0033-5606</issn><issn>1464-3847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PAzEMhiMEEqUwsmdkOeo0l1xuRBVQpEosRYwnX873ge6jJCmo_55AuzO9lv3Ish_GbgXcC8jl4nPA0C5aRAJpzthMpDpNpEmzczYDkDJRGvQlu_L-A0Do1GQz9r5tiVsagyM-1Rx53Y1doP7AGxrJYaCK--CmsYmtL3Il9rGw_eTjoHHTfsc7z7EfJh9ifOPB893e0TW7qLH3dHPKOXt7etyu1snm9fll9bBJrMhVSMyyznRdqiozCgHLDDVKjZUiULmwylBlgKBKlczL-KPJEZdWpFQaYyMh5yw57rVu8t5RXexcN6A7FAKKXyvFn5XiZCXyd0c-Xv4P-gM5JmbY</recordid><startdate>20240822</startdate><enddate>20240822</enddate><creator>Denissov, Filipp D</creator><creator>Klyachko, Anton A</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-6066-0961</orcidid></search><sort><creationdate>20240822</creationdate><title>The centre of a finitely generated strongly verbally closed group is almost always pure</title><author>Denissov, Filipp D ; Klyachko, Anton A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c195t-82f76fb5d785a0ab7a6a36ad5e0591c58ed80e0d4539b09389aa2c14eb88c5913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denissov, Filipp D</creatorcontrib><creatorcontrib>Klyachko, Anton A</creatorcontrib><collection>CrossRef</collection><jtitle>Quarterly journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denissov, Filipp D</au><au>Klyachko, Anton A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The centre of a finitely generated strongly verbally closed group is almost always pure</atitle><jtitle>Quarterly journal of mathematics</jtitle><date>2024-08-22</date><risdate>2024</risdate><volume>75</volume><issue>3</issue><spage>1149</spage><epage>1156</epage><pages>1149-1156</pages><issn>0033-5606</issn><eissn>1464-3847</eissn><abstract>ABSTRACT The assertion in the title implies that many interesting groups (for example, all non-abelian braid groups or $\textbf{SL}_{100}(\mathbb{Z})$) are not strongly verbally closed, i. e., they embed into some finitely generated groups as verbally closed subgroups, which are not retracts.</abstract><cop>UK</cop><pub>Oxford University Press</pub><doi>10.1093/qmath/haae038</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0005-6066-0961</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-5606
ispartof Quarterly journal of mathematics, 2024-08, Vol.75 (3), p.1149-1156
issn 0033-5606
1464-3847
language eng
recordid cdi_crossref_primary_10_1093_qmath_haae038
source Oxford Journals Online
title The centre of a finitely generated strongly verbally closed group is almost always pure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20centre%20of%20a%20finitely%20generated%20strongly%20verbally%20closed%20group%20is%20almost%20always%20pure&rft.jtitle=Quarterly%20journal%20of%20mathematics&rft.au=Denissov,%20Filipp%20D&rft.date=2024-08-22&rft.volume=75&rft.issue=3&rft.spage=1149&rft.epage=1156&rft.pages=1149-1156&rft.issn=0033-5606&rft.eissn=1464-3847&rft_id=info:doi/10.1093/qmath/haae038&rft_dat=%3Coup_cross%3E10.1093/qmath/haae038%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c195t-82f76fb5d785a0ab7a6a36ad5e0591c58ed80e0d4539b09389aa2c14eb88c5913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/qmath/haae038&rfr_iscdi=true