Loading…
The centre of a finitely generated strongly verbally closed group is almost always pure
ABSTRACT The assertion in the title implies that many interesting groups (for example, all non-abelian braid groups or $\textbf{SL}_{100}(\mathbb{Z})$) are not strongly verbally closed, i. e., they embed into some finitely generated groups as verbally closed subgroups, which are not retracts.
Saved in:
Published in: | Quarterly journal of mathematics 2024-08, Vol.75 (3), p.1149-1156 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c195t-82f76fb5d785a0ab7a6a36ad5e0591c58ed80e0d4539b09389aa2c14eb88c5913 |
container_end_page | 1156 |
container_issue | 3 |
container_start_page | 1149 |
container_title | Quarterly journal of mathematics |
container_volume | 75 |
creator | Denissov, Filipp D Klyachko, Anton A |
description | ABSTRACT
The assertion in the title implies that many interesting groups (for example, all non-abelian braid groups or $\textbf{SL}_{100}(\mathbb{Z})$) are not strongly verbally closed, i. e., they embed into some finitely generated groups as verbally closed subgroups, which are not retracts. |
doi_str_mv | 10.1093/qmath/haae038 |
format | article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_qmath_haae038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/qmath/haae038</oup_id><sourcerecordid>10.1093/qmath/haae038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c195t-82f76fb5d785a0ab7a6a36ad5e0591c58ed80e0d4539b09389aa2c14eb88c5913</originalsourceid><addsrcrecordid>eNqFkD1PAzEMhiMEEqUwsmdkOeo0l1xuRBVQpEosRYwnX873ge6jJCmo_55AuzO9lv3Ish_GbgXcC8jl4nPA0C5aRAJpzthMpDpNpEmzczYDkDJRGvQlu_L-A0Do1GQz9r5tiVsagyM-1Rx53Y1doP7AGxrJYaCK--CmsYmtL3Il9rGw_eTjoHHTfsc7z7EfJh9ifOPB893e0TW7qLH3dHPKOXt7etyu1snm9fll9bBJrMhVSMyyznRdqiozCgHLDDVKjZUiULmwylBlgKBKlczL-KPJEZdWpFQaYyMh5yw57rVu8t5RXexcN6A7FAKKXyvFn5XiZCXyd0c-Xv4P-gM5JmbY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The centre of a finitely generated strongly verbally closed group is almost always pure</title><source>Oxford Journals Online</source><creator>Denissov, Filipp D ; Klyachko, Anton A</creator><creatorcontrib>Denissov, Filipp D ; Klyachko, Anton A</creatorcontrib><description>ABSTRACT
The assertion in the title implies that many interesting groups (for example, all non-abelian braid groups or $\textbf{SL}_{100}(\mathbb{Z})$) are not strongly verbally closed, i. e., they embed into some finitely generated groups as verbally closed subgroups, which are not retracts.</description><identifier>ISSN: 0033-5606</identifier><identifier>EISSN: 1464-3847</identifier><identifier>DOI: 10.1093/qmath/haae038</identifier><language>eng</language><publisher>UK: Oxford University Press</publisher><ispartof>Quarterly journal of mathematics, 2024-08, Vol.75 (3), p.1149-1156</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site–for further information please contact journals.permissions@oup.com. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c195t-82f76fb5d785a0ab7a6a36ad5e0591c58ed80e0d4539b09389aa2c14eb88c5913</cites><orcidid>0009-0005-6066-0961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Denissov, Filipp D</creatorcontrib><creatorcontrib>Klyachko, Anton A</creatorcontrib><title>The centre of a finitely generated strongly verbally closed group is almost always pure</title><title>Quarterly journal of mathematics</title><description>ABSTRACT
The assertion in the title implies that many interesting groups (for example, all non-abelian braid groups or $\textbf{SL}_{100}(\mathbb{Z})$) are not strongly verbally closed, i. e., they embed into some finitely generated groups as verbally closed subgroups, which are not retracts.</description><issn>0033-5606</issn><issn>1464-3847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PAzEMhiMEEqUwsmdkOeo0l1xuRBVQpEosRYwnX873ge6jJCmo_55AuzO9lv3Ish_GbgXcC8jl4nPA0C5aRAJpzthMpDpNpEmzczYDkDJRGvQlu_L-A0Do1GQz9r5tiVsagyM-1Rx53Y1doP7AGxrJYaCK--CmsYmtL3Il9rGw_eTjoHHTfsc7z7EfJh9ifOPB893e0TW7qLH3dHPKOXt7etyu1snm9fll9bBJrMhVSMyyznRdqiozCgHLDDVKjZUiULmwylBlgKBKlczL-KPJEZdWpFQaYyMh5yw57rVu8t5RXexcN6A7FAKKXyvFn5XiZCXyd0c-Xv4P-gM5JmbY</recordid><startdate>20240822</startdate><enddate>20240822</enddate><creator>Denissov, Filipp D</creator><creator>Klyachko, Anton A</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-6066-0961</orcidid></search><sort><creationdate>20240822</creationdate><title>The centre of a finitely generated strongly verbally closed group is almost always pure</title><author>Denissov, Filipp D ; Klyachko, Anton A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c195t-82f76fb5d785a0ab7a6a36ad5e0591c58ed80e0d4539b09389aa2c14eb88c5913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denissov, Filipp D</creatorcontrib><creatorcontrib>Klyachko, Anton A</creatorcontrib><collection>CrossRef</collection><jtitle>Quarterly journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denissov, Filipp D</au><au>Klyachko, Anton A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The centre of a finitely generated strongly verbally closed group is almost always pure</atitle><jtitle>Quarterly journal of mathematics</jtitle><date>2024-08-22</date><risdate>2024</risdate><volume>75</volume><issue>3</issue><spage>1149</spage><epage>1156</epage><pages>1149-1156</pages><issn>0033-5606</issn><eissn>1464-3847</eissn><abstract>ABSTRACT
The assertion in the title implies that many interesting groups (for example, all non-abelian braid groups or $\textbf{SL}_{100}(\mathbb{Z})$) are not strongly verbally closed, i. e., they embed into some finitely generated groups as verbally closed subgroups, which are not retracts.</abstract><cop>UK</cop><pub>Oxford University Press</pub><doi>10.1093/qmath/haae038</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0005-6066-0961</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-5606 |
ispartof | Quarterly journal of mathematics, 2024-08, Vol.75 (3), p.1149-1156 |
issn | 0033-5606 1464-3847 |
language | eng |
recordid | cdi_crossref_primary_10_1093_qmath_haae038 |
source | Oxford Journals Online |
title | The centre of a finitely generated strongly verbally closed group is almost always pure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20centre%20of%20a%20finitely%20generated%20strongly%20verbally%20closed%20group%20is%20almost%20always%20pure&rft.jtitle=Quarterly%20journal%20of%20mathematics&rft.au=Denissov,%20Filipp%20D&rft.date=2024-08-22&rft.volume=75&rft.issue=3&rft.spage=1149&rft.epage=1156&rft.pages=1149-1156&rft.issn=0033-5606&rft.eissn=1464-3847&rft_id=info:doi/10.1093/qmath/haae038&rft_dat=%3Coup_cross%3E10.1093/qmath/haae038%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c195t-82f76fb5d785a0ab7a6a36ad5e0591c58ed80e0d4539b09389aa2c14eb88c5913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/qmath/haae038&rfr_iscdi=true |