Loading…
Minors for alternating dimaps
Abstract We develop a theory of minors for alternating dimaps—orientably embedded digraphs where, at each vertex, the incident edges (taken in the order given by the embedding) are directed alternately into, and out of, the vertex. We show that they are related by the triality relation of Tutte. The...
Saved in:
Published in: | Quarterly journal of mathematics 2018-03, Vol.69 (1), p.285-320 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c267t-f3cf54c3739381392c5d3b331c5b96203901f22b4c453a2858e8b5587a38cdc93 |
---|---|
cites | cdi_FETCH-LOGICAL-c267t-f3cf54c3739381392c5d3b331c5b96203901f22b4c453a2858e8b5587a38cdc93 |
container_end_page | 320 |
container_issue | 1 |
container_start_page | 285 |
container_title | Quarterly journal of mathematics |
container_volume | 69 |
creator | Farr, G E |
description | Abstract
We develop a theory of minors for alternating dimaps—orientably embedded digraphs where, at each vertex, the incident edges (taken in the order given by the embedding) are directed alternately into, and out of, the vertex. We show that they are related by the triality relation of Tutte. They do not commute in general, though do in many circumstances, and we characterize the situations where they do. We give a characterization of alternating dimaps of at most a given genus, using a finite set of excluded minors. We also use the minor operations to define simple Tutte invariants for alternating dimaps and characterize them. We establish a connection with the Tutte polynomial, and pose the problem of characterizing universal Tutte-like invariants for alternating dimaps based on these minor operations. |
doi_str_mv | 10.1093/qmath/hax039 |
format | article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_qmath_hax039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/qmath/hax039</oup_id><sourcerecordid>10.1093/qmath/hax039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-f3cf54c3739381392c5d3b331c5b96203901f22b4c453a2858e8b5587a38cdc93</originalsourceid><addsrcrecordid>eNp9jz1PwzAURS0EEqGwsSJlY8H02c-fI6ooIBWxwGw5TkyD2iTYQYJ_TyDMTHc5ujqHkHMG1wwsLt_3ftwut_4T0B6QggklKBqhD0kBgEilAnVMTnJ-A2BKGF2Qi8e261MuY59Kvxub1Pmx7V7Lut37IZ-So-h3uTn72wV5Wd8-r-7p5unuYXWzoYErPdKIIUoRUKNFw9DyIGusEFmQlVV8sgEWOa9EEBI9N9I0ppLSaI8m1MHiglzNvyH1OacmuiFNAunLMXA_ae43zc1pE3454_3H8D_5DT92Tyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Minors for alternating dimaps</title><source>Oxford Journals Online</source><creator>Farr, G E</creator><creatorcontrib>Farr, G E</creatorcontrib><description>Abstract
We develop a theory of minors for alternating dimaps—orientably embedded digraphs where, at each vertex, the incident edges (taken in the order given by the embedding) are directed alternately into, and out of, the vertex. We show that they are related by the triality relation of Tutte. They do not commute in general, though do in many circumstances, and we characterize the situations where they do. We give a characterization of alternating dimaps of at most a given genus, using a finite set of excluded minors. We also use the minor operations to define simple Tutte invariants for alternating dimaps and characterize them. We establish a connection with the Tutte polynomial, and pose the problem of characterizing universal Tutte-like invariants for alternating dimaps based on these minor operations.</description><identifier>ISSN: 0033-5606</identifier><identifier>EISSN: 1464-3847</identifier><identifier>DOI: 10.1093/qmath/hax039</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Quarterly journal of mathematics, 2018-03, Vol.69 (1), p.285-320</ispartof><rights>2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-f3cf54c3739381392c5d3b331c5b96203901f22b4c453a2858e8b5587a38cdc93</citedby><cites>FETCH-LOGICAL-c267t-f3cf54c3739381392c5d3b331c5b96203901f22b4c453a2858e8b5587a38cdc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Farr, G E</creatorcontrib><title>Minors for alternating dimaps</title><title>Quarterly journal of mathematics</title><description>Abstract
We develop a theory of minors for alternating dimaps—orientably embedded digraphs where, at each vertex, the incident edges (taken in the order given by the embedding) are directed alternately into, and out of, the vertex. We show that they are related by the triality relation of Tutte. They do not commute in general, though do in many circumstances, and we characterize the situations where they do. We give a characterization of alternating dimaps of at most a given genus, using a finite set of excluded minors. We also use the minor operations to define simple Tutte invariants for alternating dimaps and characterize them. We establish a connection with the Tutte polynomial, and pose the problem of characterizing universal Tutte-like invariants for alternating dimaps based on these minor operations.</description><issn>0033-5606</issn><issn>1464-3847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9jz1PwzAURS0EEqGwsSJlY8H02c-fI6ooIBWxwGw5TkyD2iTYQYJ_TyDMTHc5ujqHkHMG1wwsLt_3ftwut_4T0B6QggklKBqhD0kBgEilAnVMTnJ-A2BKGF2Qi8e261MuY59Kvxub1Pmx7V7Lut37IZ-So-h3uTn72wV5Wd8-r-7p5unuYXWzoYErPdKIIUoRUKNFw9DyIGusEFmQlVV8sgEWOa9EEBI9N9I0ppLSaI8m1MHiglzNvyH1OacmuiFNAunLMXA_ae43zc1pE3454_3H8D_5DT92Tyk</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Farr, G E</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>Minors for alternating dimaps</title><author>Farr, G E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-f3cf54c3739381392c5d3b331c5b96203901f22b4c453a2858e8b5587a38cdc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farr, G E</creatorcontrib><collection>CrossRef</collection><jtitle>Quarterly journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farr, G E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minors for alternating dimaps</atitle><jtitle>Quarterly journal of mathematics</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>69</volume><issue>1</issue><spage>285</spage><epage>320</epage><pages>285-320</pages><issn>0033-5606</issn><eissn>1464-3847</eissn><abstract>Abstract
We develop a theory of minors for alternating dimaps—orientably embedded digraphs where, at each vertex, the incident edges (taken in the order given by the embedding) are directed alternately into, and out of, the vertex. We show that they are related by the triality relation of Tutte. They do not commute in general, though do in many circumstances, and we characterize the situations where they do. We give a characterization of alternating dimaps of at most a given genus, using a finite set of excluded minors. We also use the minor operations to define simple Tutte invariants for alternating dimaps and characterize them. We establish a connection with the Tutte polynomial, and pose the problem of characterizing universal Tutte-like invariants for alternating dimaps based on these minor operations.</abstract><pub>Oxford University Press</pub><doi>10.1093/qmath/hax039</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-5606 |
ispartof | Quarterly journal of mathematics, 2018-03, Vol.69 (1), p.285-320 |
issn | 0033-5606 1464-3847 |
language | eng |
recordid | cdi_crossref_primary_10_1093_qmath_hax039 |
source | Oxford Journals Online |
title | Minors for alternating dimaps |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minors%20for%20alternating%20dimaps&rft.jtitle=Quarterly%20journal%20of%20mathematics&rft.au=Farr,%20G%20E&rft.date=2018-03-01&rft.volume=69&rft.issue=1&rft.spage=285&rft.epage=320&rft.pages=285-320&rft.issn=0033-5606&rft.eissn=1464-3847&rft_id=info:doi/10.1093/qmath/hax039&rft_dat=%3Coup_cross%3E10.1093/qmath/hax039%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-f3cf54c3739381392c5d3b331c5b96203901f22b4c453a2858e8b5587a38cdc93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/qmath/hax039&rfr_iscdi=true |