Loading…
Learning, Fast or Slow
Rational models claim “trading to learn” explains widespread excessive speculative trading and challenge behavioral explanations of excessive trading. We argue rational learning models do not explain speculative trading by studying day traders in Taiwan. Consistent with previous studies of learning,...
Saved in:
Published in: | Review of asset pricing studies 2020-02, Vol.10 (1), p.61-93 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-e63fa9ae62c93fde1961c5daafdec218fa1efc778e5804deebea0c099dcd0b43 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-e63fa9ae62c93fde1961c5daafdec218fa1efc778e5804deebea0c099dcd0b43 |
container_end_page | 93 |
container_issue | 1 |
container_start_page | 61 |
container_title | Review of asset pricing studies |
container_volume | 10 |
creator | Barber, Brad M Lee, Yi-Tsung Liu, Yu-Jane Odean, Terrance Zhang, Ke |
description | Rational models claim “trading to learn” explains widespread excessive speculative trading and challenge behavioral explanations of excessive trading. We argue rational learning models do not explain speculative trading by studying day traders in Taiwan. Consistent with previous studies of learning, unprofitable day traders are more likely than profitable traders to quit. Consistent with models of overconfidence and biased learning (but not with rational learning), the aggregate performance of day traders is negative; 74% of day trading volume is generated by traders with a history of losses; and 97% of day traders are likely to lose money in future day trading.
Received: March 4, 2019; Editorial decision: May 16, 2019 by Editor: Jeffrey Pontiff. Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online. |
doi_str_mv | 10.1093/rapstu/raz006 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_rapstu_raz006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_rapstu_raz006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-e63fa9ae62c93fde1961c5daafdec218fa1efc778e5804deebea0c099dcd0b43</originalsourceid><addsrcrecordid>eNo9j8FKAzEURUNRaKld2vV8gNGXZJLOW0qxKgy4sPvwmrxIpe2UZET06x0Z8W7OWV04QlwruFWA5i7TufQfA74B3ETMNNRWIhq8-HcNU7Eo5R2GObB142Zi2TLl0_70dlNtqPRVl6vXQ_d5JS4THQov_jgX283Ddv0k25fH5_V9K4NG20t2JhESOx3QpMgKnQo2Eg0etGoSKU5htWrYNlBH5h0TBECMIcKuNnMhx9uQu1IyJ3_O-yPlL6_A_2b5McuPWeYHu8ZCtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Learning, Fast or Slow</title><source>EconLit s plnými texty</source><source>Oxford Journals Online</source><creator>Barber, Brad M ; Lee, Yi-Tsung ; Liu, Yu-Jane ; Odean, Terrance ; Zhang, Ke</creator><creatorcontrib>Barber, Brad M ; Lee, Yi-Tsung ; Liu, Yu-Jane ; Odean, Terrance ; Zhang, Ke</creatorcontrib><description>Rational models claim “trading to learn” explains widespread excessive speculative trading and challenge behavioral explanations of excessive trading. We argue rational learning models do not explain speculative trading by studying day traders in Taiwan. Consistent with previous studies of learning, unprofitable day traders are more likely than profitable traders to quit. Consistent with models of overconfidence and biased learning (but not with rational learning), the aggregate performance of day traders is negative; 74% of day trading volume is generated by traders with a history of losses; and 97% of day traders are likely to lose money in future day trading.
Received: March 4, 2019; Editorial decision: May 16, 2019 by Editor: Jeffrey Pontiff. Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.</description><identifier>ISSN: 2045-9920</identifier><identifier>EISSN: 2045-9939</identifier><identifier>DOI: 10.1093/rapstu/raz006</identifier><language>eng</language><ispartof>Review of asset pricing studies, 2020-02, Vol.10 (1), p.61-93</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-e63fa9ae62c93fde1961c5daafdec218fa1efc778e5804deebea0c099dcd0b43</citedby><cites>FETCH-LOGICAL-c295t-e63fa9ae62c93fde1961c5daafdec218fa1efc778e5804deebea0c099dcd0b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Barber, Brad M</creatorcontrib><creatorcontrib>Lee, Yi-Tsung</creatorcontrib><creatorcontrib>Liu, Yu-Jane</creatorcontrib><creatorcontrib>Odean, Terrance</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><title>Learning, Fast or Slow</title><title>Review of asset pricing studies</title><description>Rational models claim “trading to learn” explains widespread excessive speculative trading and challenge behavioral explanations of excessive trading. We argue rational learning models do not explain speculative trading by studying day traders in Taiwan. Consistent with previous studies of learning, unprofitable day traders are more likely than profitable traders to quit. Consistent with models of overconfidence and biased learning (but not with rational learning), the aggregate performance of day traders is negative; 74% of day trading volume is generated by traders with a history of losses; and 97% of day traders are likely to lose money in future day trading.
Received: March 4, 2019; Editorial decision: May 16, 2019 by Editor: Jeffrey Pontiff. Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.</description><issn>2045-9920</issn><issn>2045-9939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9j8FKAzEURUNRaKld2vV8gNGXZJLOW0qxKgy4sPvwmrxIpe2UZET06x0Z8W7OWV04QlwruFWA5i7TufQfA74B3ETMNNRWIhq8-HcNU7Eo5R2GObB142Zi2TLl0_70dlNtqPRVl6vXQ_d5JS4THQov_jgX283Ddv0k25fH5_V9K4NG20t2JhESOx3QpMgKnQo2Eg0etGoSKU5htWrYNlBH5h0TBECMIcKuNnMhx9uQu1IyJ3_O-yPlL6_A_2b5McuPWeYHu8ZCtw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Barber, Brad M</creator><creator>Lee, Yi-Tsung</creator><creator>Liu, Yu-Jane</creator><creator>Odean, Terrance</creator><creator>Zhang, Ke</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200201</creationdate><title>Learning, Fast or Slow</title><author>Barber, Brad M ; Lee, Yi-Tsung ; Liu, Yu-Jane ; Odean, Terrance ; Zhang, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-e63fa9ae62c93fde1961c5daafdec218fa1efc778e5804deebea0c099dcd0b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Barber, Brad M</creatorcontrib><creatorcontrib>Lee, Yi-Tsung</creatorcontrib><creatorcontrib>Liu, Yu-Jane</creatorcontrib><creatorcontrib>Odean, Terrance</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><collection>CrossRef</collection><jtitle>Review of asset pricing studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barber, Brad M</au><au>Lee, Yi-Tsung</au><au>Liu, Yu-Jane</au><au>Odean, Terrance</au><au>Zhang, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning, Fast or Slow</atitle><jtitle>Review of asset pricing studies</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>61</spage><epage>93</epage><pages>61-93</pages><issn>2045-9920</issn><eissn>2045-9939</eissn><abstract>Rational models claim “trading to learn” explains widespread excessive speculative trading and challenge behavioral explanations of excessive trading. We argue rational learning models do not explain speculative trading by studying day traders in Taiwan. Consistent with previous studies of learning, unprofitable day traders are more likely than profitable traders to quit. Consistent with models of overconfidence and biased learning (but not with rational learning), the aggregate performance of day traders is negative; 74% of day trading volume is generated by traders with a history of losses; and 97% of day traders are likely to lose money in future day trading.
Received: March 4, 2019; Editorial decision: May 16, 2019 by Editor: Jeffrey Pontiff. Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.</abstract><doi>10.1093/rapstu/raz006</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-9920 |
ispartof | Review of asset pricing studies, 2020-02, Vol.10 (1), p.61-93 |
issn | 2045-9920 2045-9939 |
language | eng |
recordid | cdi_crossref_primary_10_1093_rapstu_raz006 |
source | EconLit s plnými texty; Oxford Journals Online |
title | Learning, Fast or Slow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning,%20Fast%20or%20Slow&rft.jtitle=Review%20of%20asset%20pricing%20studies&rft.au=Barber,%20Brad%20M&rft.date=2020-02-01&rft.volume=10&rft.issue=1&rft.spage=61&rft.epage=93&rft.pages=61-93&rft.issn=2045-9920&rft.eissn=2045-9939&rft_id=info:doi/10.1093/rapstu/raz006&rft_dat=%3Ccrossref%3E10_1093_rapstu_raz006%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-e63fa9ae62c93fde1961c5daafdec218fa1efc778e5804deebea0c099dcd0b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |