Loading…

Learning, Fast or Slow

Rational models claim “trading to learn” explains widespread excessive speculative trading and challenge behavioral explanations of excessive trading. We argue rational learning models do not explain speculative trading by studying day traders in Taiwan. Consistent with previous studies of learning,...

Full description

Saved in:
Bibliographic Details
Published in:Review of asset pricing studies 2020-02, Vol.10 (1), p.61-93
Main Authors: Barber, Brad M, Lee, Yi-Tsung, Liu, Yu-Jane, Odean, Terrance, Zhang, Ke
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-e63fa9ae62c93fde1961c5daafdec218fa1efc778e5804deebea0c099dcd0b43
cites cdi_FETCH-LOGICAL-c295t-e63fa9ae62c93fde1961c5daafdec218fa1efc778e5804deebea0c099dcd0b43
container_end_page 93
container_issue 1
container_start_page 61
container_title Review of asset pricing studies
container_volume 10
creator Barber, Brad M
Lee, Yi-Tsung
Liu, Yu-Jane
Odean, Terrance
Zhang, Ke
description Rational models claim “trading to learn” explains widespread excessive speculative trading and challenge behavioral explanations of excessive trading. We argue rational learning models do not explain speculative trading by studying day traders in Taiwan. Consistent with previous studies of learning, unprofitable day traders are more likely than profitable traders to quit. Consistent with models of overconfidence and biased learning (but not with rational learning), the aggregate performance of day traders is negative; 74% of day trading volume is generated by traders with a history of losses; and 97% of day traders are likely to lose money in future day trading. Received: March 4, 2019; Editorial decision: May 16, 2019 by Editor: Jeffrey Pontiff. Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.
doi_str_mv 10.1093/rapstu/raz006
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_rapstu_raz006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_rapstu_raz006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-e63fa9ae62c93fde1961c5daafdec218fa1efc778e5804deebea0c099dcd0b43</originalsourceid><addsrcrecordid>eNo9j8FKAzEURUNRaKld2vV8gNGXZJLOW0qxKgy4sPvwmrxIpe2UZET06x0Z8W7OWV04QlwruFWA5i7TufQfA74B3ETMNNRWIhq8-HcNU7Eo5R2GObB142Zi2TLl0_70dlNtqPRVl6vXQ_d5JS4THQov_jgX283Ddv0k25fH5_V9K4NG20t2JhESOx3QpMgKnQo2Eg0etGoSKU5htWrYNlBH5h0TBECMIcKuNnMhx9uQu1IyJ3_O-yPlL6_A_2b5McuPWeYHu8ZCtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Learning, Fast or Slow</title><source>EconLit s plnými texty</source><source>Oxford Journals Online</source><creator>Barber, Brad M ; Lee, Yi-Tsung ; Liu, Yu-Jane ; Odean, Terrance ; Zhang, Ke</creator><creatorcontrib>Barber, Brad M ; Lee, Yi-Tsung ; Liu, Yu-Jane ; Odean, Terrance ; Zhang, Ke</creatorcontrib><description>Rational models claim “trading to learn” explains widespread excessive speculative trading and challenge behavioral explanations of excessive trading. We argue rational learning models do not explain speculative trading by studying day traders in Taiwan. Consistent with previous studies of learning, unprofitable day traders are more likely than profitable traders to quit. Consistent with models of overconfidence and biased learning (but not with rational learning), the aggregate performance of day traders is negative; 74% of day trading volume is generated by traders with a history of losses; and 97% of day traders are likely to lose money in future day trading. Received: March 4, 2019; Editorial decision: May 16, 2019 by Editor: Jeffrey Pontiff. Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.</description><identifier>ISSN: 2045-9920</identifier><identifier>EISSN: 2045-9939</identifier><identifier>DOI: 10.1093/rapstu/raz006</identifier><language>eng</language><ispartof>Review of asset pricing studies, 2020-02, Vol.10 (1), p.61-93</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-e63fa9ae62c93fde1961c5daafdec218fa1efc778e5804deebea0c099dcd0b43</citedby><cites>FETCH-LOGICAL-c295t-e63fa9ae62c93fde1961c5daafdec218fa1efc778e5804deebea0c099dcd0b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Barber, Brad M</creatorcontrib><creatorcontrib>Lee, Yi-Tsung</creatorcontrib><creatorcontrib>Liu, Yu-Jane</creatorcontrib><creatorcontrib>Odean, Terrance</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><title>Learning, Fast or Slow</title><title>Review of asset pricing studies</title><description>Rational models claim “trading to learn” explains widespread excessive speculative trading and challenge behavioral explanations of excessive trading. We argue rational learning models do not explain speculative trading by studying day traders in Taiwan. Consistent with previous studies of learning, unprofitable day traders are more likely than profitable traders to quit. Consistent with models of overconfidence and biased learning (but not with rational learning), the aggregate performance of day traders is negative; 74% of day trading volume is generated by traders with a history of losses; and 97% of day traders are likely to lose money in future day trading. Received: March 4, 2019; Editorial decision: May 16, 2019 by Editor: Jeffrey Pontiff. Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.</description><issn>2045-9920</issn><issn>2045-9939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9j8FKAzEURUNRaKld2vV8gNGXZJLOW0qxKgy4sPvwmrxIpe2UZET06x0Z8W7OWV04QlwruFWA5i7TufQfA74B3ETMNNRWIhq8-HcNU7Eo5R2GObB142Zi2TLl0_70dlNtqPRVl6vXQ_d5JS4THQov_jgX283Ddv0k25fH5_V9K4NG20t2JhESOx3QpMgKnQo2Eg0etGoSKU5htWrYNlBH5h0TBECMIcKuNnMhx9uQu1IyJ3_O-yPlL6_A_2b5McuPWeYHu8ZCtw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Barber, Brad M</creator><creator>Lee, Yi-Tsung</creator><creator>Liu, Yu-Jane</creator><creator>Odean, Terrance</creator><creator>Zhang, Ke</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200201</creationdate><title>Learning, Fast or Slow</title><author>Barber, Brad M ; Lee, Yi-Tsung ; Liu, Yu-Jane ; Odean, Terrance ; Zhang, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-e63fa9ae62c93fde1961c5daafdec218fa1efc778e5804deebea0c099dcd0b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Barber, Brad M</creatorcontrib><creatorcontrib>Lee, Yi-Tsung</creatorcontrib><creatorcontrib>Liu, Yu-Jane</creatorcontrib><creatorcontrib>Odean, Terrance</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><collection>CrossRef</collection><jtitle>Review of asset pricing studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barber, Brad M</au><au>Lee, Yi-Tsung</au><au>Liu, Yu-Jane</au><au>Odean, Terrance</au><au>Zhang, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning, Fast or Slow</atitle><jtitle>Review of asset pricing studies</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>61</spage><epage>93</epage><pages>61-93</pages><issn>2045-9920</issn><eissn>2045-9939</eissn><abstract>Rational models claim “trading to learn” explains widespread excessive speculative trading and challenge behavioral explanations of excessive trading. We argue rational learning models do not explain speculative trading by studying day traders in Taiwan. Consistent with previous studies of learning, unprofitable day traders are more likely than profitable traders to quit. Consistent with models of overconfidence and biased learning (but not with rational learning), the aggregate performance of day traders is negative; 74% of day trading volume is generated by traders with a history of losses; and 97% of day traders are likely to lose money in future day trading. Received: March 4, 2019; Editorial decision: May 16, 2019 by Editor: Jeffrey Pontiff. Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.</abstract><doi>10.1093/rapstu/raz006</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2045-9920
ispartof Review of asset pricing studies, 2020-02, Vol.10 (1), p.61-93
issn 2045-9920
2045-9939
language eng
recordid cdi_crossref_primary_10_1093_rapstu_raz006
source EconLit s plnými texty; Oxford Journals Online
title Learning, Fast or Slow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning,%20Fast%20or%20Slow&rft.jtitle=Review%20of%20asset%20pricing%20studies&rft.au=Barber,%20Brad%20M&rft.date=2020-02-01&rft.volume=10&rft.issue=1&rft.spage=61&rft.epage=93&rft.pages=61-93&rft.issn=2045-9920&rft.eissn=2045-9939&rft_id=info:doi/10.1093/rapstu/raz006&rft_dat=%3Ccrossref%3E10_1093_rapstu_raz006%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-e63fa9ae62c93fde1961c5daafdec218fa1efc778e5804deebea0c099dcd0b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true