Loading…

Effects of Enucleation and Caffeine on Maturation-Promoting Factor (MPF) and Mitogen-Activated Protein Kinase (MAPK) Activities in Ovine Oocytes Used as Recipient Cytoplasts for Nuclear Transfer1

In general, oocytes arrested at metaphase of the second meiotic division (MII) are used as recipient cytoplasts for nuclear transfer (NT) procedures. MII oocytes contain high levels of maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK), which cause nuclear envelope breakdo...

Full description

Saved in:
Bibliographic Details
Published in:Biology of reproduction 2006-04, Vol.74 (4), p.691-698
Main Authors: Lee, Joon-Hee, Campbell, Keith H. S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In general, oocytes arrested at metaphase of the second meiotic division (MII) are used as recipient cytoplasts for nuclear transfer (NT) procedures. MII oocytes contain high levels of maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK), which cause nuclear envelope breakdown (NEBD) and premature chromosome condensation (PCC) in the transferred nucleus and have been implicated in nuclear reprogramming. However, the occurrence of NEBD and the extent of PCC are variable between individual oocytes and species and are dependent on donor cell type and cell cycle stage. Enucleation, which removes oocyte cytoplasm, may reduce MPF and MAPK activities and reduce reprogramming; conversely, increasing kinase activities may increase reprogramming. We compared the effects of enucleation of ovine oocytes at anaphase/telophase of the first meiotic division (AI-TI) and at MII. MPF and MAPK activities were maximal at MII; blind enucleation at AI-TI was more efficient than at MII and removed a smaller volume of cytoplasm. Neither protocol significantly affected the activity of either kinase and the fate of the donor nucleus; however, enucleation per se significantly reduced the occurrence of NEBD in NT embryos. Treatment with 10 mM caffeine significantly increased the activities of both kinases and the occurrence of NEBD but did not affect the frequency of development to the blastocyst stage; however, a significant increase in total cell numbers was observed. The results show that caffeine can increase MPF and MAPK activities in ovine oocytes and that this may contribute to an increased reprogramming in NT embryos.
ISSN:0006-3363
1529-7268
DOI:10.1095/biolreprod.105.043885