Loading…
Proof of principle study of ultrasonic particle manipulation by a circular array device
A feasibility study of a circular ultrasonic array device for acoustic particle manipulation is presented. A general approach based on Green's function is developed to analyse the underlying properties of a circular acoustic array. It allows the size of a controllable device area as a function...
Saved in:
Published in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2012-11, Vol.468 (2147), p.3571-3586 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c627t-899ce2892265e135daf2b19b29cda17b6c670b5bc935415d6254c78600321cc83 |
---|---|
cites | cdi_FETCH-LOGICAL-c627t-899ce2892265e135daf2b19b29cda17b6c670b5bc935415d6254c78600321cc83 |
container_end_page | 3586 |
container_issue | 2147 |
container_start_page | 3571 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 468 |
creator | Grinenko, Alon Wilcox, Paul D. Courtney, Charles R. P. Drinkwater, Bruce W. |
description | A feasibility study of a circular ultrasonic array device for acoustic particle manipulation is presented. A general approach based on Green's function is developed to analyse the underlying properties of a circular acoustic array. It allows the size of a controllable device area as a function of the number of array elements to be established and the array excitation required to produce a desired field distribution to be determined. A set of quantitative parameters characterizing the complexity of the pressure landscape is suggested, and relation to the number of array elements is found. Next, a finite-element model of a physically realizable circular piezo-acoustic array device is employed to demonstrate that the trapping capability can be achieved in practice. |
doi_str_mv | 10.1098/rspa.2012.0232 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rspa_2012_0232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41727022</jstor_id><sourcerecordid>41727022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c627t-899ce2892265e135daf2b19b29cda17b6c670b5bc935415d6254c78600321cc83</originalsourceid><addsrcrecordid>eNqFUk1v1DAQjRCIlsKVGyhHLln8_XFBqsqnVKAqUI4jx_GCt9k4tZMV4dfjkLKiQoBkyfa8N29m_FwUDzFaYaTV05h6syIIkxUilNwqDjGTuCKaidv5TAWrOCL4oLiX0gYhpLmSd4sDQrGWmorD4vNZDGFd5tVH31nft65Mw9hMc2hsh2hS6LwtexMHbzO4NZ3vx9YMPnRlPZWmtD7aHIilidFMZeN23rr7xZ21aZN7cL0fFZ9evvh48ro6ff_qzcnxaWUFkUOltLaOKE2I4A5T3pg1qbGuibaNwbIWVkhU89pqyhnmjSCcWakEQpRgaxU9Kp4tuv1Yb11jXZdbbiEPszVxgmA83EQ6_xW-hB1QjrTmMgs8uRaI4Wp0aYCtT9a1relcGBNglVsTTCHxf6rIfQmqyay6Wqg2hpSiW-87wghm42A2DmbjYDYuJzz-fY49_ZdTmUAXQgxTftBgvRsm2IQxdvn6d9nLf2Wdfzg73jGhPMnfBpCiGDGOuIDvvl-kMgg-pdHBT8pN-T-rPVqqbdIQ4n4GhiWRiMx4teA-De7bHjfxEoSkksOFYvD8HL1F4uIdCPoD4c7h1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660063927</pqid></control><display><type>article</type><title>Proof of principle study of ultrasonic particle manipulation by a circular array device</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><creator>Grinenko, Alon ; Wilcox, Paul D. ; Courtney, Charles R. P. ; Drinkwater, Bruce W.</creator><creatorcontrib>Grinenko, Alon ; Wilcox, Paul D. ; Courtney, Charles R. P. ; Drinkwater, Bruce W.</creatorcontrib><description>A feasibility study of a circular ultrasonic array device for acoustic particle manipulation is presented. A general approach based on Green's function is developed to analyse the underlying properties of a circular acoustic array. It allows the size of a controllable device area as a function of the number of array elements to be established and the array excitation required to produce a desired field distribution to be determined. A set of quantitative parameters characterizing the complexity of the pressure landscape is suggested, and relation to the number of array elements is found. Next, a finite-element model of a physically realizable circular piezo-acoustic array device is employed to demonstrate that the trapping capability can be achieved in practice.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2012.0232</identifier><identifier>PMID: 23197936</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Acoustic Radiation Force ; Arrays ; Boundary conditions ; Circularity ; Devices ; Greens function ; Landscapes ; Mathematical analysis ; Mathematical models ; Narrative devices ; Particle Manipulation ; Pressure distribution ; Sound waves ; Stability ; Standing waves ; Transducers ; Trapped particles ; Trapping ; Tweezers ; Ultrasonics</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2012-11, Vol.468 (2147), p.3571-3586</ispartof><rights>COPYRIGHT © 2012 The Royal Society</rights><rights>This journal is © 2012 The Royal Society</rights><rights>This journal is © 2012 The Royal Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c627t-899ce2892265e135daf2b19b29cda17b6c670b5bc935415d6254c78600321cc83</citedby><cites>FETCH-LOGICAL-c627t-899ce2892265e135daf2b19b29cda17b6c670b5bc935415d6254c78600321cc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41727022$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41727022$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23197936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grinenko, Alon</creatorcontrib><creatorcontrib>Wilcox, Paul D.</creatorcontrib><creatorcontrib>Courtney, Charles R. P.</creatorcontrib><creatorcontrib>Drinkwater, Bruce W.</creatorcontrib><title>Proof of principle study of ultrasonic particle manipulation by a circular array device</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>A feasibility study of a circular ultrasonic array device for acoustic particle manipulation is presented. A general approach based on Green's function is developed to analyse the underlying properties of a circular acoustic array. It allows the size of a controllable device area as a function of the number of array elements to be established and the array excitation required to produce a desired field distribution to be determined. A set of quantitative parameters characterizing the complexity of the pressure landscape is suggested, and relation to the number of array elements is found. Next, a finite-element model of a physically realizable circular piezo-acoustic array device is employed to demonstrate that the trapping capability can be achieved in practice.</description><subject>Acoustic Radiation Force</subject><subject>Arrays</subject><subject>Boundary conditions</subject><subject>Circularity</subject><subject>Devices</subject><subject>Greens function</subject><subject>Landscapes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Narrative devices</subject><subject>Particle Manipulation</subject><subject>Pressure distribution</subject><subject>Sound waves</subject><subject>Stability</subject><subject>Standing waves</subject><subject>Transducers</subject><subject>Trapped particles</subject><subject>Trapping</subject><subject>Tweezers</subject><subject>Ultrasonics</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFUk1v1DAQjRCIlsKVGyhHLln8_XFBqsqnVKAqUI4jx_GCt9k4tZMV4dfjkLKiQoBkyfa8N29m_FwUDzFaYaTV05h6syIIkxUilNwqDjGTuCKaidv5TAWrOCL4oLiX0gYhpLmSd4sDQrGWmorD4vNZDGFd5tVH31nft65Mw9hMc2hsh2hS6LwtexMHbzO4NZ3vx9YMPnRlPZWmtD7aHIilidFMZeN23rr7xZ21aZN7cL0fFZ9evvh48ro6ff_qzcnxaWUFkUOltLaOKE2I4A5T3pg1qbGuibaNwbIWVkhU89pqyhnmjSCcWakEQpRgaxU9Kp4tuv1Yb11jXZdbbiEPszVxgmA83EQ6_xW-hB1QjrTmMgs8uRaI4Wp0aYCtT9a1relcGBNglVsTTCHxf6rIfQmqyay6Wqg2hpSiW-87wghm42A2DmbjYDYuJzz-fY49_ZdTmUAXQgxTftBgvRsm2IQxdvn6d9nLf2Wdfzg73jGhPMnfBpCiGDGOuIDvvl-kMgg-pdHBT8pN-T-rPVqqbdIQ4n4GhiWRiMx4teA-De7bHjfxEoSkksOFYvD8HL1F4uIdCPoD4c7h1A</recordid><startdate>20121108</startdate><enddate>20121108</enddate><creator>Grinenko, Alon</creator><creator>Wilcox, Paul D.</creator><creator>Courtney, Charles R. P.</creator><creator>Drinkwater, Bruce W.</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20121108</creationdate><title>Proof of principle study of ultrasonic particle manipulation by a circular array device</title><author>Grinenko, Alon ; Wilcox, Paul D. ; Courtney, Charles R. P. ; Drinkwater, Bruce W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c627t-899ce2892265e135daf2b19b29cda17b6c670b5bc935415d6254c78600321cc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustic Radiation Force</topic><topic>Arrays</topic><topic>Boundary conditions</topic><topic>Circularity</topic><topic>Devices</topic><topic>Greens function</topic><topic>Landscapes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Narrative devices</topic><topic>Particle Manipulation</topic><topic>Pressure distribution</topic><topic>Sound waves</topic><topic>Stability</topic><topic>Standing waves</topic><topic>Transducers</topic><topic>Trapped particles</topic><topic>Trapping</topic><topic>Tweezers</topic><topic>Ultrasonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grinenko, Alon</creatorcontrib><creatorcontrib>Wilcox, Paul D.</creatorcontrib><creatorcontrib>Courtney, Charles R. P.</creatorcontrib><creatorcontrib>Drinkwater, Bruce W.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grinenko, Alon</au><au>Wilcox, Paul D.</au><au>Courtney, Charles R. P.</au><au>Drinkwater, Bruce W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proof of principle study of ultrasonic particle manipulation by a circular array device</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2012-11-08</date><risdate>2012</risdate><volume>468</volume><issue>2147</issue><spage>3571</spage><epage>3586</epage><pages>3571-3586</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>A feasibility study of a circular ultrasonic array device for acoustic particle manipulation is presented. A general approach based on Green's function is developed to analyse the underlying properties of a circular acoustic array. It allows the size of a controllable device area as a function of the number of array elements to be established and the array excitation required to produce a desired field distribution to be determined. A set of quantitative parameters characterizing the complexity of the pressure landscape is suggested, and relation to the number of array elements is found. Next, a finite-element model of a physically realizable circular piezo-acoustic array device is employed to demonstrate that the trapping capability can be achieved in practice.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>23197936</pmid><doi>10.1098/rspa.2012.0232</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2012-11, Vol.468 (2147), p.3571-3586 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_crossref_primary_10_1098_rspa_2012_0232 |
source | JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list) |
subjects | Acoustic Radiation Force Arrays Boundary conditions Circularity Devices Greens function Landscapes Mathematical analysis Mathematical models Narrative devices Particle Manipulation Pressure distribution Sound waves Stability Standing waves Transducers Trapped particles Trapping Tweezers Ultrasonics |
title | Proof of principle study of ultrasonic particle manipulation by a circular array device |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proof%20of%20principle%20study%20of%20ultrasonic%20particle%20manipulation%20by%20a%20circular%20array%20device&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Grinenko,%20Alon&rft.date=2012-11-08&rft.volume=468&rft.issue=2147&rft.spage=3571&rft.epage=3586&rft.pages=3571-3586&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2012.0232&rft_dat=%3Cjstor_cross%3E41727022%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c627t-899ce2892265e135daf2b19b29cda17b6c670b5bc935415d6254c78600321cc83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660063927&rft_id=info:pmid/23197936&rft_jstor_id=41727022&rfr_iscdi=true |