Loading…

Proof of principle study of ultrasonic particle manipulation by a circular array device

A feasibility study of a circular ultrasonic array device for acoustic particle manipulation is presented. A general approach based on Green's function is developed to analyse the underlying properties of a circular acoustic array. It allows the size of a controllable device area as a function...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2012-11, Vol.468 (2147), p.3571-3586
Main Authors: Grinenko, Alon, Wilcox, Paul D., Courtney, Charles R. P., Drinkwater, Bruce W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c627t-899ce2892265e135daf2b19b29cda17b6c670b5bc935415d6254c78600321cc83
cites cdi_FETCH-LOGICAL-c627t-899ce2892265e135daf2b19b29cda17b6c670b5bc935415d6254c78600321cc83
container_end_page 3586
container_issue 2147
container_start_page 3571
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 468
creator Grinenko, Alon
Wilcox, Paul D.
Courtney, Charles R. P.
Drinkwater, Bruce W.
description A feasibility study of a circular ultrasonic array device for acoustic particle manipulation is presented. A general approach based on Green's function is developed to analyse the underlying properties of a circular acoustic array. It allows the size of a controllable device area as a function of the number of array elements to be established and the array excitation required to produce a desired field distribution to be determined. A set of quantitative parameters characterizing the complexity of the pressure landscape is suggested, and relation to the number of array elements is found. Next, a finite-element model of a physically realizable circular piezo-acoustic array device is employed to demonstrate that the trapping capability can be achieved in practice.
doi_str_mv 10.1098/rspa.2012.0232
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rspa_2012_0232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41727022</jstor_id><sourcerecordid>41727022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c627t-899ce2892265e135daf2b19b29cda17b6c670b5bc935415d6254c78600321cc83</originalsourceid><addsrcrecordid>eNqFUk1v1DAQjRCIlsKVGyhHLln8_XFBqsqnVKAqUI4jx_GCt9k4tZMV4dfjkLKiQoBkyfa8N29m_FwUDzFaYaTV05h6syIIkxUilNwqDjGTuCKaidv5TAWrOCL4oLiX0gYhpLmSd4sDQrGWmorD4vNZDGFd5tVH31nft65Mw9hMc2hsh2hS6LwtexMHbzO4NZ3vx9YMPnRlPZWmtD7aHIilidFMZeN23rr7xZ21aZN7cL0fFZ9evvh48ro6ff_qzcnxaWUFkUOltLaOKE2I4A5T3pg1qbGuibaNwbIWVkhU89pqyhnmjSCcWakEQpRgaxU9Kp4tuv1Yb11jXZdbbiEPszVxgmA83EQ6_xW-hB1QjrTmMgs8uRaI4Wp0aYCtT9a1relcGBNglVsTTCHxf6rIfQmqyay6Wqg2hpSiW-87wghm42A2DmbjYDYuJzz-fY49_ZdTmUAXQgxTftBgvRsm2IQxdvn6d9nLf2Wdfzg73jGhPMnfBpCiGDGOuIDvvl-kMgg-pdHBT8pN-T-rPVqqbdIQ4n4GhiWRiMx4teA-De7bHjfxEoSkksOFYvD8HL1F4uIdCPoD4c7h1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660063927</pqid></control><display><type>article</type><title>Proof of principle study of ultrasonic particle manipulation by a circular array device</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Grinenko, Alon ; Wilcox, Paul D. ; Courtney, Charles R. P. ; Drinkwater, Bruce W.</creator><creatorcontrib>Grinenko, Alon ; Wilcox, Paul D. ; Courtney, Charles R. P. ; Drinkwater, Bruce W.</creatorcontrib><description>A feasibility study of a circular ultrasonic array device for acoustic particle manipulation is presented. A general approach based on Green's function is developed to analyse the underlying properties of a circular acoustic array. It allows the size of a controllable device area as a function of the number of array elements to be established and the array excitation required to produce a desired field distribution to be determined. A set of quantitative parameters characterizing the complexity of the pressure landscape is suggested, and relation to the number of array elements is found. Next, a finite-element model of a physically realizable circular piezo-acoustic array device is employed to demonstrate that the trapping capability can be achieved in practice.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2012.0232</identifier><identifier>PMID: 23197936</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Acoustic Radiation Force ; Arrays ; Boundary conditions ; Circularity ; Devices ; Greens function ; Landscapes ; Mathematical analysis ; Mathematical models ; Narrative devices ; Particle Manipulation ; Pressure distribution ; Sound waves ; Stability ; Standing waves ; Transducers ; Trapped particles ; Trapping ; Tweezers ; Ultrasonics</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2012-11, Vol.468 (2147), p.3571-3586</ispartof><rights>COPYRIGHT © 2012 The Royal Society</rights><rights>This journal is © 2012 The Royal Society</rights><rights>This journal is © 2012 The Royal Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c627t-899ce2892265e135daf2b19b29cda17b6c670b5bc935415d6254c78600321cc83</citedby><cites>FETCH-LOGICAL-c627t-899ce2892265e135daf2b19b29cda17b6c670b5bc935415d6254c78600321cc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41727022$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41727022$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23197936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grinenko, Alon</creatorcontrib><creatorcontrib>Wilcox, Paul D.</creatorcontrib><creatorcontrib>Courtney, Charles R. P.</creatorcontrib><creatorcontrib>Drinkwater, Bruce W.</creatorcontrib><title>Proof of principle study of ultrasonic particle manipulation by a circular array device</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>A feasibility study of a circular ultrasonic array device for acoustic particle manipulation is presented. A general approach based on Green's function is developed to analyse the underlying properties of a circular acoustic array. It allows the size of a controllable device area as a function of the number of array elements to be established and the array excitation required to produce a desired field distribution to be determined. A set of quantitative parameters characterizing the complexity of the pressure landscape is suggested, and relation to the number of array elements is found. Next, a finite-element model of a physically realizable circular piezo-acoustic array device is employed to demonstrate that the trapping capability can be achieved in practice.</description><subject>Acoustic Radiation Force</subject><subject>Arrays</subject><subject>Boundary conditions</subject><subject>Circularity</subject><subject>Devices</subject><subject>Greens function</subject><subject>Landscapes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Narrative devices</subject><subject>Particle Manipulation</subject><subject>Pressure distribution</subject><subject>Sound waves</subject><subject>Stability</subject><subject>Standing waves</subject><subject>Transducers</subject><subject>Trapped particles</subject><subject>Trapping</subject><subject>Tweezers</subject><subject>Ultrasonics</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFUk1v1DAQjRCIlsKVGyhHLln8_XFBqsqnVKAqUI4jx_GCt9k4tZMV4dfjkLKiQoBkyfa8N29m_FwUDzFaYaTV05h6syIIkxUilNwqDjGTuCKaidv5TAWrOCL4oLiX0gYhpLmSd4sDQrGWmorD4vNZDGFd5tVH31nft65Mw9hMc2hsh2hS6LwtexMHbzO4NZ3vx9YMPnRlPZWmtD7aHIilidFMZeN23rr7xZ21aZN7cL0fFZ9evvh48ro6ff_qzcnxaWUFkUOltLaOKE2I4A5T3pg1qbGuibaNwbIWVkhU89pqyhnmjSCcWakEQpRgaxU9Kp4tuv1Yb11jXZdbbiEPszVxgmA83EQ6_xW-hB1QjrTmMgs8uRaI4Wp0aYCtT9a1relcGBNglVsTTCHxf6rIfQmqyay6Wqg2hpSiW-87wghm42A2DmbjYDYuJzz-fY49_ZdTmUAXQgxTftBgvRsm2IQxdvn6d9nLf2Wdfzg73jGhPMnfBpCiGDGOuIDvvl-kMgg-pdHBT8pN-T-rPVqqbdIQ4n4GhiWRiMx4teA-De7bHjfxEoSkksOFYvD8HL1F4uIdCPoD4c7h1A</recordid><startdate>20121108</startdate><enddate>20121108</enddate><creator>Grinenko, Alon</creator><creator>Wilcox, Paul D.</creator><creator>Courtney, Charles R. P.</creator><creator>Drinkwater, Bruce W.</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20121108</creationdate><title>Proof of principle study of ultrasonic particle manipulation by a circular array device</title><author>Grinenko, Alon ; Wilcox, Paul D. ; Courtney, Charles R. P. ; Drinkwater, Bruce W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c627t-899ce2892265e135daf2b19b29cda17b6c670b5bc935415d6254c78600321cc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustic Radiation Force</topic><topic>Arrays</topic><topic>Boundary conditions</topic><topic>Circularity</topic><topic>Devices</topic><topic>Greens function</topic><topic>Landscapes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Narrative devices</topic><topic>Particle Manipulation</topic><topic>Pressure distribution</topic><topic>Sound waves</topic><topic>Stability</topic><topic>Standing waves</topic><topic>Transducers</topic><topic>Trapped particles</topic><topic>Trapping</topic><topic>Tweezers</topic><topic>Ultrasonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grinenko, Alon</creatorcontrib><creatorcontrib>Wilcox, Paul D.</creatorcontrib><creatorcontrib>Courtney, Charles R. P.</creatorcontrib><creatorcontrib>Drinkwater, Bruce W.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grinenko, Alon</au><au>Wilcox, Paul D.</au><au>Courtney, Charles R. P.</au><au>Drinkwater, Bruce W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proof of principle study of ultrasonic particle manipulation by a circular array device</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2012-11-08</date><risdate>2012</risdate><volume>468</volume><issue>2147</issue><spage>3571</spage><epage>3586</epage><pages>3571-3586</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>A feasibility study of a circular ultrasonic array device for acoustic particle manipulation is presented. A general approach based on Green's function is developed to analyse the underlying properties of a circular acoustic array. It allows the size of a controllable device area as a function of the number of array elements to be established and the array excitation required to produce a desired field distribution to be determined. A set of quantitative parameters characterizing the complexity of the pressure landscape is suggested, and relation to the number of array elements is found. Next, a finite-element model of a physically realizable circular piezo-acoustic array device is employed to demonstrate that the trapping capability can be achieved in practice.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>23197936</pmid><doi>10.1098/rspa.2012.0232</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2012-11, Vol.468 (2147), p.3571-3586
issn 1364-5021
1471-2946
language eng
recordid cdi_crossref_primary_10_1098_rspa_2012_0232
source JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Acoustic Radiation Force
Arrays
Boundary conditions
Circularity
Devices
Greens function
Landscapes
Mathematical analysis
Mathematical models
Narrative devices
Particle Manipulation
Pressure distribution
Sound waves
Stability
Standing waves
Transducers
Trapped particles
Trapping
Tweezers
Ultrasonics
title Proof of principle study of ultrasonic particle manipulation by a circular array device
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proof%20of%20principle%20study%20of%20ultrasonic%20particle%20manipulation%20by%20a%20circular%20array%20device&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Grinenko,%20Alon&rft.date=2012-11-08&rft.volume=468&rft.issue=2147&rft.spage=3571&rft.epage=3586&rft.pages=3571-3586&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2012.0232&rft_dat=%3Cjstor_cross%3E41727022%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c627t-899ce2892265e135daf2b19b29cda17b6c670b5bc935415d6254c78600321cc83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660063927&rft_id=info:pmid/23197936&rft_jstor_id=41727022&rfr_iscdi=true