Loading…
Capillary imbibition of non-Newtonian fluids in a microfluidic channel: analysis and experiments
We have presented an experimental analysis on the investigations of capillary filling dynamics of inelastic non-Newtonian fluids in the regime of surface tension dominated flows. We use the Ostwald–de Waele power-law model to describe the rheology of the non-Newtonian fluids. Our analysis primarily...
Saved in:
Published in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2020-10, Vol.476 (2242), p.1-14 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c275t-7afe9ba92b0c66992553c29597ad773d06a123507c6ba82905d1409d4bd5add73 |
---|---|
cites | cdi_FETCH-LOGICAL-c275t-7afe9ba92b0c66992553c29597ad773d06a123507c6ba82905d1409d4bd5add73 |
container_end_page | 14 |
container_issue | 2242 |
container_start_page | 1 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 476 |
creator | Gorthi, Srinivas R. Meher, Sanjaya Kumar Biswas, Gautam Mondal, Pranab Kumar |
description | We have presented an experimental analysis on the investigations of capillary filling dynamics of inelastic non-Newtonian fluids in the regime of surface tension dominated flows. We use the Ostwald–de Waele power-law model to describe the rheology of the non-Newtonian fluids. Our analysis primarily focuses on the experimental observations and revisits the theoretical understanding of the capillary dynamics from the perspective of filling kinematics at the interfacial scale. Notably, theoretical predictions of the filling length into the capillary largely endorse our experimental results. We study the effects of the shear-thinning nature of the fluid on the underlying filling phenomenon in the capillary-driven regime through a quantitative analysis. We further show that the dynamics of contact line motion in this regime plays an essential role in advancing the fluid front in the capillary. Our experimental results on the filling in a horizontal capillary re-establish the applicability of the Washburn analysis in predicting the filling characteristics of non-Newtonian fluids in a vertical capillary during early stage of filling (Digilov 2008 Langmuir 24, 13 663–13 667 (doi:10.1021/la801807j)). Finally, through a scaling analysis, we suggest that the late stage of filling by the shear-thinning fluids closely follows the variation x ∼ √ t. Such a regime can be called the modified Washburn regime (Washburn 1921 Phys. Rev. 17, 273–283 (doi:10.1103/PhysRev.17.273)). |
doi_str_mv | 10.1098/rspa.2020.0496 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rspa_2020_0496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27097285</jstor_id><sourcerecordid>27097285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-7afe9ba92b0c66992553c29597ad773d06a123507c6ba82905d1409d4bd5add73</originalsourceid><addsrcrecordid>eNo9kEFLxDAQhYMouK5evQn5A62TtEk6RymuKyx60XOZJi1madPSVMR_b-uKpzc83hseH2O3AlIBWNxPcaRUgoQUctRnbCNyIxKJuT5f7kzniQIpLtlVjEcAQFWYDduVNPquo-mb-772tZ_9EPjQ8jCE5KX5mofgKfC2-_Quch848d7bafg1vOX2g0Joumt20VIXm5s_3bL33eNbuU8Or0_P5cMhsdKoOTHUNlgTyhqs1ohSqcxKVGjIGZM50CRkpsBYXVMhEZQTOaDLa6fIOZNtWXr6u0yIcWraapx8v6yvBFQrhWqlUK0UqpXCUrg7FY5xHqb_tDSARhYq-wGCwlp_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Capillary imbibition of non-Newtonian fluids in a microfluidic channel: analysis and experiments</title><source>JSTOR Archival Journals</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><creator>Gorthi, Srinivas R. ; Meher, Sanjaya Kumar ; Biswas, Gautam ; Mondal, Pranab Kumar</creator><creatorcontrib>Gorthi, Srinivas R. ; Meher, Sanjaya Kumar ; Biswas, Gautam ; Mondal, Pranab Kumar</creatorcontrib><description>We have presented an experimental analysis on the investigations of capillary filling dynamics of inelastic non-Newtonian fluids in the regime of surface tension dominated flows. We use the Ostwald–de Waele power-law model to describe the rheology of the non-Newtonian fluids. Our analysis primarily focuses on the experimental observations and revisits the theoretical understanding of the capillary dynamics from the perspective of filling kinematics at the interfacial scale. Notably, theoretical predictions of the filling length into the capillary largely endorse our experimental results. We study the effects of the shear-thinning nature of the fluid on the underlying filling phenomenon in the capillary-driven regime through a quantitative analysis. We further show that the dynamics of contact line motion in this regime plays an essential role in advancing the fluid front in the capillary. Our experimental results on the filling in a horizontal capillary re-establish the applicability of the Washburn analysis in predicting the filling characteristics of non-Newtonian fluids in a vertical capillary during early stage of filling (Digilov 2008 Langmuir 24, 13 663–13 667 (doi:10.1021/la801807j)). Finally, through a scaling analysis, we suggest that the late stage of filling by the shear-thinning fluids closely follows the variation x ∼ √ t. Such a regime can be called the modified Washburn regime (Washburn 1921 Phys. Rev. 17, 273–283 (doi:10.1103/PhysRev.17.273)).</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2020.0496</identifier><language>eng</language><publisher>Royal Society</publisher><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2020-10, Vol.476 (2242), p.1-14</ispartof><rights>2020 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-7afe9ba92b0c66992553c29597ad773d06a123507c6ba82905d1409d4bd5add73</citedby><cites>FETCH-LOGICAL-c275t-7afe9ba92b0c66992553c29597ad773d06a123507c6ba82905d1409d4bd5add73</cites><orcidid>0000-0002-8306-0767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27097285$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27097285$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,58237,58470</link.rule.ids></links><search><creatorcontrib>Gorthi, Srinivas R.</creatorcontrib><creatorcontrib>Meher, Sanjaya Kumar</creatorcontrib><creatorcontrib>Biswas, Gautam</creatorcontrib><creatorcontrib>Mondal, Pranab Kumar</creatorcontrib><title>Capillary imbibition of non-Newtonian fluids in a microfluidic channel: analysis and experiments</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>We have presented an experimental analysis on the investigations of capillary filling dynamics of inelastic non-Newtonian fluids in the regime of surface tension dominated flows. We use the Ostwald–de Waele power-law model to describe the rheology of the non-Newtonian fluids. Our analysis primarily focuses on the experimental observations and revisits the theoretical understanding of the capillary dynamics from the perspective of filling kinematics at the interfacial scale. Notably, theoretical predictions of the filling length into the capillary largely endorse our experimental results. We study the effects of the shear-thinning nature of the fluid on the underlying filling phenomenon in the capillary-driven regime through a quantitative analysis. We further show that the dynamics of contact line motion in this regime plays an essential role in advancing the fluid front in the capillary. Our experimental results on the filling in a horizontal capillary re-establish the applicability of the Washburn analysis in predicting the filling characteristics of non-Newtonian fluids in a vertical capillary during early stage of filling (Digilov 2008 Langmuir 24, 13 663–13 667 (doi:10.1021/la801807j)). Finally, through a scaling analysis, we suggest that the late stage of filling by the shear-thinning fluids closely follows the variation x ∼ √ t. Such a regime can be called the modified Washburn regime (Washburn 1921 Phys. Rev. 17, 273–283 (doi:10.1103/PhysRev.17.273)).</description><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLxDAQhYMouK5evQn5A62TtEk6RymuKyx60XOZJi1madPSVMR_b-uKpzc83hseH2O3AlIBWNxPcaRUgoQUctRnbCNyIxKJuT5f7kzniQIpLtlVjEcAQFWYDduVNPquo-mb-772tZ_9EPjQ8jCE5KX5mofgKfC2-_Quch848d7bafg1vOX2g0Joumt20VIXm5s_3bL33eNbuU8Or0_P5cMhsdKoOTHUNlgTyhqs1ohSqcxKVGjIGZM50CRkpsBYXVMhEZQTOaDLa6fIOZNtWXr6u0yIcWraapx8v6yvBFQrhWqlUK0UqpXCUrg7FY5xHqb_tDSARhYq-wGCwlp_</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Gorthi, Srinivas R.</creator><creator>Meher, Sanjaya Kumar</creator><creator>Biswas, Gautam</creator><creator>Mondal, Pranab Kumar</creator><general>Royal Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8306-0767</orcidid></search><sort><creationdate>20201001</creationdate><title>Capillary imbibition of non-Newtonian fluids in a microfluidic channel</title><author>Gorthi, Srinivas R. ; Meher, Sanjaya Kumar ; Biswas, Gautam ; Mondal, Pranab Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-7afe9ba92b0c66992553c29597ad773d06a123507c6ba82905d1409d4bd5add73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorthi, Srinivas R.</creatorcontrib><creatorcontrib>Meher, Sanjaya Kumar</creatorcontrib><creatorcontrib>Biswas, Gautam</creatorcontrib><creatorcontrib>Mondal, Pranab Kumar</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorthi, Srinivas R.</au><au>Meher, Sanjaya Kumar</au><au>Biswas, Gautam</au><au>Mondal, Pranab Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capillary imbibition of non-Newtonian fluids in a microfluidic channel: analysis and experiments</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>476</volume><issue>2242</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>We have presented an experimental analysis on the investigations of capillary filling dynamics of inelastic non-Newtonian fluids in the regime of surface tension dominated flows. We use the Ostwald–de Waele power-law model to describe the rheology of the non-Newtonian fluids. Our analysis primarily focuses on the experimental observations and revisits the theoretical understanding of the capillary dynamics from the perspective of filling kinematics at the interfacial scale. Notably, theoretical predictions of the filling length into the capillary largely endorse our experimental results. We study the effects of the shear-thinning nature of the fluid on the underlying filling phenomenon in the capillary-driven regime through a quantitative analysis. We further show that the dynamics of contact line motion in this regime plays an essential role in advancing the fluid front in the capillary. Our experimental results on the filling in a horizontal capillary re-establish the applicability of the Washburn analysis in predicting the filling characteristics of non-Newtonian fluids in a vertical capillary during early stage of filling (Digilov 2008 Langmuir 24, 13 663–13 667 (doi:10.1021/la801807j)). Finally, through a scaling analysis, we suggest that the late stage of filling by the shear-thinning fluids closely follows the variation x ∼ √ t. Such a regime can be called the modified Washburn regime (Washburn 1921 Phys. Rev. 17, 273–283 (doi:10.1103/PhysRev.17.273)).</abstract><pub>Royal Society</pub><doi>10.1098/rspa.2020.0496</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8306-0767</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2020-10, Vol.476 (2242), p.1-14 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_crossref_primary_10_1098_rspa_2020_0496 |
source | JSTOR Archival Journals; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list) |
title | Capillary imbibition of non-Newtonian fluids in a microfluidic channel: analysis and experiments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capillary%20imbibition%20of%20non-Newtonian%20fluids%20in%20a%20microfluidic%20channel:%20analysis%20and%20experiments&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Gorthi,%20Srinivas%20R.&rft.date=2020-10-01&rft.volume=476&rft.issue=2242&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2020.0496&rft_dat=%3Cjstor_cross%3E27097285%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c275t-7afe9ba92b0c66992553c29597ad773d06a123507c6ba82905d1409d4bd5add73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27097285&rfr_iscdi=true |