Loading…

Random feature models for learning interacting dynamical systems

Particle dynamics and multi-agent systems provide accurate dynamical models for studying and forecasting the behaviour of complex interacting systems. They often take the form of a high-dimensional system of differential equations parameterized by an interaction kernel that models the underlying att...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2023-07, Vol.479 (2275)
Main Authors: Liu, Yuxuan, McCalla, Scott G., Schaeffer, Hayden
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Particle dynamics and multi-agent systems provide accurate dynamical models for studying and forecasting the behaviour of complex interacting systems. They often take the form of a high-dimensional system of differential equations parameterized by an interaction kernel that models the underlying attractive or repulsive forces between agents. We consider the problem of constructing a data-based approximation of the interacting forces directly from noisy observations of the paths of the agents in time. The learned interaction kernels are then used to predict the agents’ behaviour over a longer time interval. The approximation developed in this work uses a randomized feature algorithm and a sparse randomized feature approach. Sparsity-promoting regression provides a mechanism for pruning the randomly generated features which was observed to be beneficial when one has limited data, in particular, leading to less overfitting than other approaches. In addition, imposing sparsity reduces the kernel evaluation cost which significantly lowers the simulation cost for forecasting the multi-agent systems. Our method is applied to various examples, including first-order systems with homogeneous and heterogeneous interactions, second-order homogeneous systems, and a new sheep swarming system.
ISSN:1364-5021
1471-2946
DOI:10.1098/rspa.2022.0835