Loading…

How do antigenically varying pathogens avoid cross-reactive responses to invariant antigens?

Pathogens such as trypanosomes and malaria use antigenic variation to evade immune responses and prolong the duration of infections. As pathogens typically express more than one antigen, even relatively rare conserved antigens might be expected to trigger cross-reactive immune responses capable of c...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2012-07, Vol.279 (1739), p.2777-2785
Main Authors: Johnson, Philip L. F., Kochin, Beth F., Ahmed, Rafi, Antia, Rustom
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pathogens such as trypanosomes and malaria use antigenic variation to evade immune responses and prolong the duration of infections. As pathogens typically express more than one antigen, even relatively rare conserved antigens might be expected to trigger cross-reactive immune responses capable of clearing the infection. We use simple mathematical models that explicitly consider the dynamic interplay between the replicating pathogen, immune responses to different antigens and immune exhaustion to explore how pathogens can escape the responses to both variable and invariant (conserved) antigens. Our results suggest two hypotheses. In the first, limited quantities of invariant antigens on each pathogen may lead to saturation in killing by cross-reactive responses. In the second, antigenic variation of the dominant antigens prolongs the duration of infection sufficiently to allow for exhaustion of the cross-reactive responses to subdominant, invariant epitopes prior to their being able to control the infection. These hypotheses make distinct predictions: the former predicts that cross-reactive responses will always be ineffective while the latter predicts that appropriately timed treatment could, by preventing exhaustion, lead to the generation of long-lasting protective cross-reactive immunity and thus act similarly to a vaccine.
ISSN:0962-8452
1471-2945
1471-2954
DOI:10.1098/rspb.2012.0005