Loading…

Asymptotic velocity for four celestial bodies

Asymptotic velocity is defined as the Cesàro limit of velocity. As such, its existence has been proved for bounded interaction potentials. This is known to be wrong in celestial mechanics with four or more bodies. Here, we show for a class of pair potentials including the homogeneous ones of degree...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2018-10, Vol.376 (2131), p.20170426
Main Author: Knauf, Andreas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c334t-8f5c451c4860d825a3f82c6de2248118a4738f205cfd4ac6492fd7c37eaf23923
container_end_page
container_issue 2131
container_start_page 20170426
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 376
creator Knauf, Andreas
description Asymptotic velocity is defined as the Cesàro limit of velocity. As such, its existence has been proved for bounded interaction potentials. This is known to be wrong in celestial mechanics with four or more bodies. Here, we show for a class of pair potentials including the homogeneous ones of degree −α for α∈(0, 2), that asymptotic velocities exist for up to four bodies, dimension three or larger, for any energy and almost all initial conditions on the energy surface. This article is part of the theme issue 'Finite dimensional integrable systems: new trends and methods'.
doi_str_mv 10.1098/rsta.2017.0426
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rsta_2017_0426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2109332235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8f5c451c4860d825a3f82c6de2248118a4738f205cfd4ac6492fd7c37eaf23923</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk6vHqVHL63JS9KmxzH8BQMvCt5ClibQ0S41SYX-96ZsevMQkgeffN97H4RuCS4IrsWDD1EVgElVYAblGVoSVpEc6hLO05uWLOeYfi7QVQh7jAkpOVyiBcUAjBGxRPk6TP0QXWx19m06p9s4Zdb5dEafadOZEFvVZTvXtCZcowurumBuTvcKfTw9vm9e8u3b8-tmvc01pSzmwnLNONFMlLgRwBW1AnTZmNRVECIUq6iwgLm2DVO6ZDXYptK0MsoCrYGu0P0xd_Dua0wjyL4NaZhOHYwbg4S0O6UAlCe0OKLauxC8sXLwba_8JAmWsyI5K5KzIjkrSh_uTtnjrjfNH_7rJAH0CHg3pSWTEhMnuU8-Dqn8L_YH-ilyhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2109332235</pqid></control><display><type>article</type><title>Asymptotic velocity for four celestial bodies</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Knauf, Andreas</creator><creatorcontrib>Knauf, Andreas</creatorcontrib><description>Asymptotic velocity is defined as the Cesàro limit of velocity. As such, its existence has been proved for bounded interaction potentials. This is known to be wrong in celestial mechanics with four or more bodies. Here, we show for a class of pair potentials including the homogeneous ones of degree −α for α∈(0, 2), that asymptotic velocities exist for up to four bodies, dimension three or larger, for any energy and almost all initial conditions on the energy surface. This article is part of the theme issue 'Finite dimensional integrable systems: new trends and methods'.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2017.0426</identifier><identifier>PMID: 30224418</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Asymptotic Velocity ; Celestial Mechanics ; Scattering Theory</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2018-10, Vol.376 (2131), p.20170426</ispartof><rights>2018 The Author(s)</rights><rights>2018 The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c334t-8f5c451c4860d825a3f82c6de2248118a4738f205cfd4ac6492fd7c37eaf23923</cites><orcidid>0000-0002-7312-3023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30224418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Knauf, Andreas</creatorcontrib><title>Asymptotic velocity for four celestial bodies</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Phil. Trans. R. Soc. A</addtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>Asymptotic velocity is defined as the Cesàro limit of velocity. As such, its existence has been proved for bounded interaction potentials. This is known to be wrong in celestial mechanics with four or more bodies. Here, we show for a class of pair potentials including the homogeneous ones of degree −α for α∈(0, 2), that asymptotic velocities exist for up to four bodies, dimension three or larger, for any energy and almost all initial conditions on the energy surface. This article is part of the theme issue 'Finite dimensional integrable systems: new trends and methods'.</description><subject>Asymptotic Velocity</subject><subject>Celestial Mechanics</subject><subject>Scattering Theory</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk6vHqVHL63JS9KmxzH8BQMvCt5ClibQ0S41SYX-96ZsevMQkgeffN97H4RuCS4IrsWDD1EVgElVYAblGVoSVpEc6hLO05uWLOeYfi7QVQh7jAkpOVyiBcUAjBGxRPk6TP0QXWx19m06p9s4Zdb5dEafadOZEFvVZTvXtCZcowurumBuTvcKfTw9vm9e8u3b8-tmvc01pSzmwnLNONFMlLgRwBW1AnTZmNRVECIUq6iwgLm2DVO6ZDXYptK0MsoCrYGu0P0xd_Dua0wjyL4NaZhOHYwbg4S0O6UAlCe0OKLauxC8sXLwba_8JAmWsyI5K5KzIjkrSh_uTtnjrjfNH_7rJAH0CHg3pSWTEhMnuU8-Dqn8L_YH-ilyhA</recordid><startdate>20181028</startdate><enddate>20181028</enddate><creator>Knauf, Andreas</creator><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7312-3023</orcidid></search><sort><creationdate>20181028</creationdate><title>Asymptotic velocity for four celestial bodies</title><author>Knauf, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8f5c451c4860d825a3f82c6de2248118a4738f205cfd4ac6492fd7c37eaf23923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic Velocity</topic><topic>Celestial Mechanics</topic><topic>Scattering Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knauf, Andreas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knauf, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic velocity for four celestial bodies</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Phil. Trans. R. Soc. A</stitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2018-10-28</date><risdate>2018</risdate><volume>376</volume><issue>2131</issue><spage>20170426</spage><pages>20170426-</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Asymptotic velocity is defined as the Cesàro limit of velocity. As such, its existence has been proved for bounded interaction potentials. This is known to be wrong in celestial mechanics with four or more bodies. Here, we show for a class of pair potentials including the homogeneous ones of degree −α for α∈(0, 2), that asymptotic velocities exist for up to four bodies, dimension three or larger, for any energy and almost all initial conditions on the energy surface. This article is part of the theme issue 'Finite dimensional integrable systems: new trends and methods'.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>30224418</pmid><doi>10.1098/rsta.2017.0426</doi><orcidid>https://orcid.org/0000-0002-7312-3023</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2018-10, Vol.376 (2131), p.20170426
issn 1364-503X
1471-2962
language eng
recordid cdi_crossref_primary_10_1098_rsta_2017_0426
source JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Asymptotic Velocity
Celestial Mechanics
Scattering Theory
title Asymptotic velocity for four celestial bodies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A41%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20velocity%20for%20four%20celestial%20bodies&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Knauf,%20Andreas&rft.date=2018-10-28&rft.volume=376&rft.issue=2131&rft.spage=20170426&rft.pages=20170426-&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2017.0426&rft_dat=%3Cproquest_cross%3E2109332235%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-8f5c451c4860d825a3f82c6de2248118a4738f205cfd4ac6492fd7c37eaf23923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2109332235&rft_id=info:pmid/30224418&rfr_iscdi=true