Loading…
Asymptotic velocity for four celestial bodies
Asymptotic velocity is defined as the Cesàro limit of velocity. As such, its existence has been proved for bounded interaction potentials. This is known to be wrong in celestial mechanics with four or more bodies. Here, we show for a class of pair potentials including the homogeneous ones of degree...
Saved in:
Published in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2018-10, Vol.376 (2131), p.20170426 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-8f5c451c4860d825a3f82c6de2248118a4738f205cfd4ac6492fd7c37eaf23923 |
container_end_page | |
container_issue | 2131 |
container_start_page | 20170426 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 376 |
creator | Knauf, Andreas |
description | Asymptotic velocity is defined as the Cesàro limit of velocity. As such, its existence has been proved for bounded interaction potentials. This is known to be wrong in celestial mechanics with four or more bodies. Here, we show for a class of pair potentials including the homogeneous ones of degree −α for α∈(0, 2), that asymptotic velocities exist for up to four bodies, dimension three or larger, for any energy and almost all initial conditions on the energy surface.
This article is part of the theme issue 'Finite dimensional integrable systems: new trends and methods'. |
doi_str_mv | 10.1098/rsta.2017.0426 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1098_rsta_2017_0426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2109332235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8f5c451c4860d825a3f82c6de2248118a4738f205cfd4ac6492fd7c37eaf23923</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk6vHqVHL63JS9KmxzH8BQMvCt5ClibQ0S41SYX-96ZsevMQkgeffN97H4RuCS4IrsWDD1EVgElVYAblGVoSVpEc6hLO05uWLOeYfi7QVQh7jAkpOVyiBcUAjBGxRPk6TP0QXWx19m06p9s4Zdb5dEafadOZEFvVZTvXtCZcowurumBuTvcKfTw9vm9e8u3b8-tmvc01pSzmwnLNONFMlLgRwBW1AnTZmNRVECIUq6iwgLm2DVO6ZDXYptK0MsoCrYGu0P0xd_Dua0wjyL4NaZhOHYwbg4S0O6UAlCe0OKLauxC8sXLwba_8JAmWsyI5K5KzIjkrSh_uTtnjrjfNH_7rJAH0CHg3pSWTEhMnuU8-Dqn8L_YH-ilyhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2109332235</pqid></control><display><type>article</type><title>Asymptotic velocity for four celestial bodies</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><creator>Knauf, Andreas</creator><creatorcontrib>Knauf, Andreas</creatorcontrib><description>Asymptotic velocity is defined as the Cesàro limit of velocity. As such, its existence has been proved for bounded interaction potentials. This is known to be wrong in celestial mechanics with four or more bodies. Here, we show for a class of pair potentials including the homogeneous ones of degree −α for α∈(0, 2), that asymptotic velocities exist for up to four bodies, dimension three or larger, for any energy and almost all initial conditions on the energy surface.
This article is part of the theme issue 'Finite dimensional integrable systems: new trends and methods'.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2017.0426</identifier><identifier>PMID: 30224418</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Asymptotic Velocity ; Celestial Mechanics ; Scattering Theory</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2018-10, Vol.376 (2131), p.20170426</ispartof><rights>2018 The Author(s)</rights><rights>2018 The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c334t-8f5c451c4860d825a3f82c6de2248118a4738f205cfd4ac6492fd7c37eaf23923</cites><orcidid>0000-0002-7312-3023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30224418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Knauf, Andreas</creatorcontrib><title>Asymptotic velocity for four celestial bodies</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Phil. Trans. R. Soc. A</addtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>Asymptotic velocity is defined as the Cesàro limit of velocity. As such, its existence has been proved for bounded interaction potentials. This is known to be wrong in celestial mechanics with four or more bodies. Here, we show for a class of pair potentials including the homogeneous ones of degree −α for α∈(0, 2), that asymptotic velocities exist for up to four bodies, dimension three or larger, for any energy and almost all initial conditions on the energy surface.
This article is part of the theme issue 'Finite dimensional integrable systems: new trends and methods'.</description><subject>Asymptotic Velocity</subject><subject>Celestial Mechanics</subject><subject>Scattering Theory</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk6vHqVHL63JS9KmxzH8BQMvCt5ClibQ0S41SYX-96ZsevMQkgeffN97H4RuCS4IrsWDD1EVgElVYAblGVoSVpEc6hLO05uWLOeYfi7QVQh7jAkpOVyiBcUAjBGxRPk6TP0QXWx19m06p9s4Zdb5dEafadOZEFvVZTvXtCZcowurumBuTvcKfTw9vm9e8u3b8-tmvc01pSzmwnLNONFMlLgRwBW1AnTZmNRVECIUq6iwgLm2DVO6ZDXYptK0MsoCrYGu0P0xd_Dua0wjyL4NaZhOHYwbg4S0O6UAlCe0OKLauxC8sXLwba_8JAmWsyI5K5KzIjkrSh_uTtnjrjfNH_7rJAH0CHg3pSWTEhMnuU8-Dqn8L_YH-ilyhA</recordid><startdate>20181028</startdate><enddate>20181028</enddate><creator>Knauf, Andreas</creator><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7312-3023</orcidid></search><sort><creationdate>20181028</creationdate><title>Asymptotic velocity for four celestial bodies</title><author>Knauf, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8f5c451c4860d825a3f82c6de2248118a4738f205cfd4ac6492fd7c37eaf23923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic Velocity</topic><topic>Celestial Mechanics</topic><topic>Scattering Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knauf, Andreas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knauf, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic velocity for four celestial bodies</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Phil. Trans. R. Soc. A</stitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2018-10-28</date><risdate>2018</risdate><volume>376</volume><issue>2131</issue><spage>20170426</spage><pages>20170426-</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Asymptotic velocity is defined as the Cesàro limit of velocity. As such, its existence has been proved for bounded interaction potentials. This is known to be wrong in celestial mechanics with four or more bodies. Here, we show for a class of pair potentials including the homogeneous ones of degree −α for α∈(0, 2), that asymptotic velocities exist for up to four bodies, dimension three or larger, for any energy and almost all initial conditions on the energy surface.
This article is part of the theme issue 'Finite dimensional integrable systems: new trends and methods'.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>30224418</pmid><doi>10.1098/rsta.2017.0426</doi><orcidid>https://orcid.org/0000-0002-7312-3023</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2018-10, Vol.376 (2131), p.20170426 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_crossref_primary_10_1098_rsta_2017_0426 |
source | JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list) |
subjects | Asymptotic Velocity Celestial Mechanics Scattering Theory |
title | Asymptotic velocity for four celestial bodies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A41%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20velocity%20for%20four%20celestial%20bodies&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Knauf,%20Andreas&rft.date=2018-10-28&rft.volume=376&rft.issue=2131&rft.spage=20170426&rft.pages=20170426-&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2017.0426&rft_dat=%3Cproquest_cross%3E2109332235%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-8f5c451c4860d825a3f82c6de2248118a4738f205cfd4ac6492fd7c37eaf23923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2109332235&rft_id=info:pmid/30224418&rfr_iscdi=true |