Loading…
Single-Molecule Morphology of Topologically Digested Olympic Networks
The kinetoplast DNA (kDNA) is the archetype of a two-dimensional Olympic network, composed of thousands of DNA minicircles and found in the mitochondrion of certain parasites. The evolution, replication, and self-assembly of this structure are fascinating open questions in biology that can also info...
Saved in:
Published in: | PRX Life 2024-02, Vol.2 (1), Article 013009 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c839-173dc1544db49297574d9f3f9284340cac7b8717b913ab8730f8623869cebc6c3 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | PRX Life |
container_volume | 2 |
creator | Ramakrishnan, Saminathan Chen, Zihao Fosado, Yair Augusto Gutierrez Tubiana, Luca Vanderlinden, Willem Savill, Nicholas Jon Schnaufer, Achim Michieletto, Davide |
description | The kinetoplast DNA (kDNA) is the archetype of a two-dimensional Olympic network, composed of thousands of DNA minicircles and found in the mitochondrion of certain parasites. The evolution, replication, and self-assembly of this structure are fascinating open questions in biology that can also inform us how to realize synthetic Olympic networks . To obtain a deeper understanding of the structure and assembly of kDNA networks, we sequenced the kDNA genome and performed high-resolution atomic force microscopy and analysis of kDNA networks that had been partially digested by selected restriction enzymes. We discovered that these topological perturbations lead to networks with significantly different geometrical features and morphologies with respect to the unperturbed kDNA, and that these changes are strongly dependent on the class of DNA circles targeted by the restriction enzymes. Specifically, cleaving maxicircles leads to a dramatic reduction in network size once adsorbed onto the surface, while cleaving both maxicircles and a minor class of minicircles yields noncircular and deformed structures. We argue that our results are a consequence of a precise positioning of the maxicircles at the boundary of the network, and we discuss our findings in the context of kDNA biogenesis, design of artificial Olympic networks, and detection of perturbations. |
doi_str_mv | 10.1103/PRXLife.2.013009 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PRXLife_2_013009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PRXLife_2_013009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c839-173dc1544db49297574d9f3f9284340cac7b8717b913ab8730f8623869cebc6c3</originalsourceid><addsrcrecordid>eNpN0E9PwyAcxnFiNHGZu3vkDXQCP1rgaOb8k3TOaA_eSEuhEpk0MGP67nXZDp6ez-k5fBG6pmRJKYGbl9f32ju7ZEtCgRB1hmZMQllIJtT5P1-iRc6-IyVVAiTnM7R-819DsMUmBmu-g8WbmMaPGOIw4ehwE8eDvWlDmPCdH2ze2x5vw7QbvcHPdv8T02e-QheuDdkuTjtHzf26WT0W9fbhaXVbF0aCKqiA3tCS877jiilRCt4rB04xyYET0xrRSUFFpyi0fwLiZMVAVsrYzlQG5ogcb02KOSfr9Jj8rk2TpkQfQuhTCM30MQT8AkgRUh4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Single-Molecule Morphology of Topologically Digested Olympic Networks</title><source>Alma/SFX Local Collection</source><creator>Ramakrishnan, Saminathan ; Chen, Zihao ; Fosado, Yair Augusto Gutierrez ; Tubiana, Luca ; Vanderlinden, Willem ; Savill, Nicholas Jon ; Schnaufer, Achim ; Michieletto, Davide</creator><creatorcontrib>Ramakrishnan, Saminathan ; Chen, Zihao ; Fosado, Yair Augusto Gutierrez ; Tubiana, Luca ; Vanderlinden, Willem ; Savill, Nicholas Jon ; Schnaufer, Achim ; Michieletto, Davide</creatorcontrib><description>The kinetoplast DNA (kDNA) is the archetype of a two-dimensional Olympic network, composed of thousands of DNA minicircles and found in the mitochondrion of certain parasites. The evolution, replication, and self-assembly of this structure are fascinating open questions in biology that can also inform us how to realize synthetic Olympic networks . To obtain a deeper understanding of the structure and assembly of kDNA networks, we sequenced the kDNA genome and performed high-resolution atomic force microscopy and analysis of kDNA networks that had been partially digested by selected restriction enzymes. We discovered that these topological perturbations lead to networks with significantly different geometrical features and morphologies with respect to the unperturbed kDNA, and that these changes are strongly dependent on the class of DNA circles targeted by the restriction enzymes. Specifically, cleaving maxicircles leads to a dramatic reduction in network size once adsorbed onto the surface, while cleaving both maxicircles and a minor class of minicircles yields noncircular and deformed structures. We argue that our results are a consequence of a precise positioning of the maxicircles at the boundary of the network, and we discuss our findings in the context of kDNA biogenesis, design of artificial Olympic networks, and detection of perturbations.</description><identifier>ISSN: 2835-8279</identifier><identifier>EISSN: 2835-8279</identifier><identifier>DOI: 10.1103/PRXLife.2.013009</identifier><language>eng</language><ispartof>PRX Life, 2024-02, Vol.2 (1), Article 013009</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c839-173dc1544db49297574d9f3f9284340cac7b8717b913ab8730f8623869cebc6c3</cites><orcidid>0000-0003-2186-6869 ; 0000-0002-9769-6168 ; 0000-0003-2640-6482 ; 0000-0003-2132-5560 ; 0000-0002-8767-2429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ramakrishnan, Saminathan</creatorcontrib><creatorcontrib>Chen, Zihao</creatorcontrib><creatorcontrib>Fosado, Yair Augusto Gutierrez</creatorcontrib><creatorcontrib>Tubiana, Luca</creatorcontrib><creatorcontrib>Vanderlinden, Willem</creatorcontrib><creatorcontrib>Savill, Nicholas Jon</creatorcontrib><creatorcontrib>Schnaufer, Achim</creatorcontrib><creatorcontrib>Michieletto, Davide</creatorcontrib><title>Single-Molecule Morphology of Topologically Digested Olympic Networks</title><title>PRX Life</title><description>The kinetoplast DNA (kDNA) is the archetype of a two-dimensional Olympic network, composed of thousands of DNA minicircles and found in the mitochondrion of certain parasites. The evolution, replication, and self-assembly of this structure are fascinating open questions in biology that can also inform us how to realize synthetic Olympic networks . To obtain a deeper understanding of the structure and assembly of kDNA networks, we sequenced the kDNA genome and performed high-resolution atomic force microscopy and analysis of kDNA networks that had been partially digested by selected restriction enzymes. We discovered that these topological perturbations lead to networks with significantly different geometrical features and morphologies with respect to the unperturbed kDNA, and that these changes are strongly dependent on the class of DNA circles targeted by the restriction enzymes. Specifically, cleaving maxicircles leads to a dramatic reduction in network size once adsorbed onto the surface, while cleaving both maxicircles and a minor class of minicircles yields noncircular and deformed structures. We argue that our results are a consequence of a precise positioning of the maxicircles at the boundary of the network, and we discuss our findings in the context of kDNA biogenesis, design of artificial Olympic networks, and detection of perturbations.</description><issn>2835-8279</issn><issn>2835-8279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpN0E9PwyAcxnFiNHGZu3vkDXQCP1rgaOb8k3TOaA_eSEuhEpk0MGP67nXZDp6ez-k5fBG6pmRJKYGbl9f32ju7ZEtCgRB1hmZMQllIJtT5P1-iRc6-IyVVAiTnM7R-819DsMUmBmu-g8WbmMaPGOIw4ehwE8eDvWlDmPCdH2ze2x5vw7QbvcHPdv8T02e-QheuDdkuTjtHzf26WT0W9fbhaXVbF0aCKqiA3tCS877jiilRCt4rB04xyYET0xrRSUFFpyi0fwLiZMVAVsrYzlQG5ogcb02KOSfr9Jj8rk2TpkQfQuhTCM30MQT8AkgRUh4</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Ramakrishnan, Saminathan</creator><creator>Chen, Zihao</creator><creator>Fosado, Yair Augusto Gutierrez</creator><creator>Tubiana, Luca</creator><creator>Vanderlinden, Willem</creator><creator>Savill, Nicholas Jon</creator><creator>Schnaufer, Achim</creator><creator>Michieletto, Davide</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2186-6869</orcidid><orcidid>https://orcid.org/0000-0002-9769-6168</orcidid><orcidid>https://orcid.org/0000-0003-2640-6482</orcidid><orcidid>https://orcid.org/0000-0003-2132-5560</orcidid><orcidid>https://orcid.org/0000-0002-8767-2429</orcidid></search><sort><creationdate>202402</creationdate><title>Single-Molecule Morphology of Topologically Digested Olympic Networks</title><author>Ramakrishnan, Saminathan ; Chen, Zihao ; Fosado, Yair Augusto Gutierrez ; Tubiana, Luca ; Vanderlinden, Willem ; Savill, Nicholas Jon ; Schnaufer, Achim ; Michieletto, Davide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c839-173dc1544db49297574d9f3f9284340cac7b8717b913ab8730f8623869cebc6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramakrishnan, Saminathan</creatorcontrib><creatorcontrib>Chen, Zihao</creatorcontrib><creatorcontrib>Fosado, Yair Augusto Gutierrez</creatorcontrib><creatorcontrib>Tubiana, Luca</creatorcontrib><creatorcontrib>Vanderlinden, Willem</creatorcontrib><creatorcontrib>Savill, Nicholas Jon</creatorcontrib><creatorcontrib>Schnaufer, Achim</creatorcontrib><creatorcontrib>Michieletto, Davide</creatorcontrib><collection>CrossRef</collection><jtitle>PRX Life</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramakrishnan, Saminathan</au><au>Chen, Zihao</au><au>Fosado, Yair Augusto Gutierrez</au><au>Tubiana, Luca</au><au>Vanderlinden, Willem</au><au>Savill, Nicholas Jon</au><au>Schnaufer, Achim</au><au>Michieletto, Davide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Molecule Morphology of Topologically Digested Olympic Networks</atitle><jtitle>PRX Life</jtitle><date>2024-02</date><risdate>2024</risdate><volume>2</volume><issue>1</issue><artnum>013009</artnum><issn>2835-8279</issn><eissn>2835-8279</eissn><abstract>The kinetoplast DNA (kDNA) is the archetype of a two-dimensional Olympic network, composed of thousands of DNA minicircles and found in the mitochondrion of certain parasites. The evolution, replication, and self-assembly of this structure are fascinating open questions in biology that can also inform us how to realize synthetic Olympic networks . To obtain a deeper understanding of the structure and assembly of kDNA networks, we sequenced the kDNA genome and performed high-resolution atomic force microscopy and analysis of kDNA networks that had been partially digested by selected restriction enzymes. We discovered that these topological perturbations lead to networks with significantly different geometrical features and morphologies with respect to the unperturbed kDNA, and that these changes are strongly dependent on the class of DNA circles targeted by the restriction enzymes. Specifically, cleaving maxicircles leads to a dramatic reduction in network size once adsorbed onto the surface, while cleaving both maxicircles and a minor class of minicircles yields noncircular and deformed structures. We argue that our results are a consequence of a precise positioning of the maxicircles at the boundary of the network, and we discuss our findings in the context of kDNA biogenesis, design of artificial Olympic networks, and detection of perturbations.</abstract><doi>10.1103/PRXLife.2.013009</doi><orcidid>https://orcid.org/0000-0003-2186-6869</orcidid><orcidid>https://orcid.org/0000-0002-9769-6168</orcidid><orcidid>https://orcid.org/0000-0003-2640-6482</orcidid><orcidid>https://orcid.org/0000-0003-2132-5560</orcidid><orcidid>https://orcid.org/0000-0002-8767-2429</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2835-8279 |
ispartof | PRX Life, 2024-02, Vol.2 (1), Article 013009 |
issn | 2835-8279 2835-8279 |
language | eng |
recordid | cdi_crossref_primary_10_1103_PRXLife_2_013009 |
source | Alma/SFX Local Collection |
title | Single-Molecule Morphology of Topologically Digested Olympic Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Molecule%20Morphology%20of%20Topologically%20Digested%20Olympic%20Networks&rft.jtitle=PRX%20Life&rft.au=Ramakrishnan,%20Saminathan&rft.date=2024-02&rft.volume=2&rft.issue=1&rft.artnum=013009&rft.issn=2835-8279&rft.eissn=2835-8279&rft_id=info:doi/10.1103/PRXLife.2.013009&rft_dat=%3Ccrossref%3E10_1103_PRXLife_2_013009%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c839-173dc1544db49297574d9f3f9284340cac7b8717b913ab8730f8623869cebc6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |