Loading…

Single-Molecule Morphology of Topologically Digested Olympic Networks

The kinetoplast DNA (kDNA) is the archetype of a two-dimensional Olympic network, composed of thousands of DNA minicircles and found in the mitochondrion of certain parasites. The evolution, replication, and self-assembly of this structure are fascinating open questions in biology that can also info...

Full description

Saved in:
Bibliographic Details
Published in:PRX Life 2024-02, Vol.2 (1), Article 013009
Main Authors: Ramakrishnan, Saminathan, Chen, Zihao, Fosado, Yair Augusto Gutierrez, Tubiana, Luca, Vanderlinden, Willem, Savill, Nicholas Jon, Schnaufer, Achim, Michieletto, Davide
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c839-173dc1544db49297574d9f3f9284340cac7b8717b913ab8730f8623869cebc6c3
container_end_page
container_issue 1
container_start_page
container_title PRX Life
container_volume 2
creator Ramakrishnan, Saminathan
Chen, Zihao
Fosado, Yair Augusto Gutierrez
Tubiana, Luca
Vanderlinden, Willem
Savill, Nicholas Jon
Schnaufer, Achim
Michieletto, Davide
description The kinetoplast DNA (kDNA) is the archetype of a two-dimensional Olympic network, composed of thousands of DNA minicircles and found in the mitochondrion of certain parasites. The evolution, replication, and self-assembly of this structure are fascinating open questions in biology that can also inform us how to realize synthetic Olympic networks . To obtain a deeper understanding of the structure and assembly of kDNA networks, we sequenced the kDNA genome and performed high-resolution atomic force microscopy and analysis of kDNA networks that had been partially digested by selected restriction enzymes. We discovered that these topological perturbations lead to networks with significantly different geometrical features and morphologies with respect to the unperturbed kDNA, and that these changes are strongly dependent on the class of DNA circles targeted by the restriction enzymes. Specifically, cleaving maxicircles leads to a dramatic reduction in network size once adsorbed onto the surface, while cleaving both maxicircles and a minor class of minicircles yields noncircular and deformed structures. We argue that our results are a consequence of a precise positioning of the maxicircles at the boundary of the network, and we discuss our findings in the context of kDNA biogenesis, design of artificial Olympic networks, and detection of perturbations.
doi_str_mv 10.1103/PRXLife.2.013009
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PRXLife_2_013009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PRXLife_2_013009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c839-173dc1544db49297574d9f3f9284340cac7b8717b913ab8730f8623869cebc6c3</originalsourceid><addsrcrecordid>eNpN0E9PwyAcxnFiNHGZu3vkDXQCP1rgaOb8k3TOaA_eSEuhEpk0MGP67nXZDp6ez-k5fBG6pmRJKYGbl9f32ju7ZEtCgRB1hmZMQllIJtT5P1-iRc6-IyVVAiTnM7R-819DsMUmBmu-g8WbmMaPGOIw4ehwE8eDvWlDmPCdH2ze2x5vw7QbvcHPdv8T02e-QheuDdkuTjtHzf26WT0W9fbhaXVbF0aCKqiA3tCS877jiilRCt4rB04xyYET0xrRSUFFpyi0fwLiZMVAVsrYzlQG5ogcb02KOSfr9Jj8rk2TpkQfQuhTCM30MQT8AkgRUh4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Single-Molecule Morphology of Topologically Digested Olympic Networks</title><source>Alma/SFX Local Collection</source><creator>Ramakrishnan, Saminathan ; Chen, Zihao ; Fosado, Yair Augusto Gutierrez ; Tubiana, Luca ; Vanderlinden, Willem ; Savill, Nicholas Jon ; Schnaufer, Achim ; Michieletto, Davide</creator><creatorcontrib>Ramakrishnan, Saminathan ; Chen, Zihao ; Fosado, Yair Augusto Gutierrez ; Tubiana, Luca ; Vanderlinden, Willem ; Savill, Nicholas Jon ; Schnaufer, Achim ; Michieletto, Davide</creatorcontrib><description>The kinetoplast DNA (kDNA) is the archetype of a two-dimensional Olympic network, composed of thousands of DNA minicircles and found in the mitochondrion of certain parasites. The evolution, replication, and self-assembly of this structure are fascinating open questions in biology that can also inform us how to realize synthetic Olympic networks . To obtain a deeper understanding of the structure and assembly of kDNA networks, we sequenced the kDNA genome and performed high-resolution atomic force microscopy and analysis of kDNA networks that had been partially digested by selected restriction enzymes. We discovered that these topological perturbations lead to networks with significantly different geometrical features and morphologies with respect to the unperturbed kDNA, and that these changes are strongly dependent on the class of DNA circles targeted by the restriction enzymes. Specifically, cleaving maxicircles leads to a dramatic reduction in network size once adsorbed onto the surface, while cleaving both maxicircles and a minor class of minicircles yields noncircular and deformed structures. We argue that our results are a consequence of a precise positioning of the maxicircles at the boundary of the network, and we discuss our findings in the context of kDNA biogenesis, design of artificial Olympic networks, and detection of perturbations.</description><identifier>ISSN: 2835-8279</identifier><identifier>EISSN: 2835-8279</identifier><identifier>DOI: 10.1103/PRXLife.2.013009</identifier><language>eng</language><ispartof>PRX Life, 2024-02, Vol.2 (1), Article 013009</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c839-173dc1544db49297574d9f3f9284340cac7b8717b913ab8730f8623869cebc6c3</cites><orcidid>0000-0003-2186-6869 ; 0000-0002-9769-6168 ; 0000-0003-2640-6482 ; 0000-0003-2132-5560 ; 0000-0002-8767-2429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ramakrishnan, Saminathan</creatorcontrib><creatorcontrib>Chen, Zihao</creatorcontrib><creatorcontrib>Fosado, Yair Augusto Gutierrez</creatorcontrib><creatorcontrib>Tubiana, Luca</creatorcontrib><creatorcontrib>Vanderlinden, Willem</creatorcontrib><creatorcontrib>Savill, Nicholas Jon</creatorcontrib><creatorcontrib>Schnaufer, Achim</creatorcontrib><creatorcontrib>Michieletto, Davide</creatorcontrib><title>Single-Molecule Morphology of Topologically Digested Olympic Networks</title><title>PRX Life</title><description>The kinetoplast DNA (kDNA) is the archetype of a two-dimensional Olympic network, composed of thousands of DNA minicircles and found in the mitochondrion of certain parasites. The evolution, replication, and self-assembly of this structure are fascinating open questions in biology that can also inform us how to realize synthetic Olympic networks . To obtain a deeper understanding of the structure and assembly of kDNA networks, we sequenced the kDNA genome and performed high-resolution atomic force microscopy and analysis of kDNA networks that had been partially digested by selected restriction enzymes. We discovered that these topological perturbations lead to networks with significantly different geometrical features and morphologies with respect to the unperturbed kDNA, and that these changes are strongly dependent on the class of DNA circles targeted by the restriction enzymes. Specifically, cleaving maxicircles leads to a dramatic reduction in network size once adsorbed onto the surface, while cleaving both maxicircles and a minor class of minicircles yields noncircular and deformed structures. We argue that our results are a consequence of a precise positioning of the maxicircles at the boundary of the network, and we discuss our findings in the context of kDNA biogenesis, design of artificial Olympic networks, and detection of perturbations.</description><issn>2835-8279</issn><issn>2835-8279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpN0E9PwyAcxnFiNHGZu3vkDXQCP1rgaOb8k3TOaA_eSEuhEpk0MGP67nXZDp6ez-k5fBG6pmRJKYGbl9f32ju7ZEtCgRB1hmZMQllIJtT5P1-iRc6-IyVVAiTnM7R-819DsMUmBmu-g8WbmMaPGOIw4ehwE8eDvWlDmPCdH2ze2x5vw7QbvcHPdv8T02e-QheuDdkuTjtHzf26WT0W9fbhaXVbF0aCKqiA3tCS877jiilRCt4rB04xyYET0xrRSUFFpyi0fwLiZMVAVsrYzlQG5ogcb02KOSfr9Jj8rk2TpkQfQuhTCM30MQT8AkgRUh4</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Ramakrishnan, Saminathan</creator><creator>Chen, Zihao</creator><creator>Fosado, Yair Augusto Gutierrez</creator><creator>Tubiana, Luca</creator><creator>Vanderlinden, Willem</creator><creator>Savill, Nicholas Jon</creator><creator>Schnaufer, Achim</creator><creator>Michieletto, Davide</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2186-6869</orcidid><orcidid>https://orcid.org/0000-0002-9769-6168</orcidid><orcidid>https://orcid.org/0000-0003-2640-6482</orcidid><orcidid>https://orcid.org/0000-0003-2132-5560</orcidid><orcidid>https://orcid.org/0000-0002-8767-2429</orcidid></search><sort><creationdate>202402</creationdate><title>Single-Molecule Morphology of Topologically Digested Olympic Networks</title><author>Ramakrishnan, Saminathan ; Chen, Zihao ; Fosado, Yair Augusto Gutierrez ; Tubiana, Luca ; Vanderlinden, Willem ; Savill, Nicholas Jon ; Schnaufer, Achim ; Michieletto, Davide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c839-173dc1544db49297574d9f3f9284340cac7b8717b913ab8730f8623869cebc6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramakrishnan, Saminathan</creatorcontrib><creatorcontrib>Chen, Zihao</creatorcontrib><creatorcontrib>Fosado, Yair Augusto Gutierrez</creatorcontrib><creatorcontrib>Tubiana, Luca</creatorcontrib><creatorcontrib>Vanderlinden, Willem</creatorcontrib><creatorcontrib>Savill, Nicholas Jon</creatorcontrib><creatorcontrib>Schnaufer, Achim</creatorcontrib><creatorcontrib>Michieletto, Davide</creatorcontrib><collection>CrossRef</collection><jtitle>PRX Life</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramakrishnan, Saminathan</au><au>Chen, Zihao</au><au>Fosado, Yair Augusto Gutierrez</au><au>Tubiana, Luca</au><au>Vanderlinden, Willem</au><au>Savill, Nicholas Jon</au><au>Schnaufer, Achim</au><au>Michieletto, Davide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Molecule Morphology of Topologically Digested Olympic Networks</atitle><jtitle>PRX Life</jtitle><date>2024-02</date><risdate>2024</risdate><volume>2</volume><issue>1</issue><artnum>013009</artnum><issn>2835-8279</issn><eissn>2835-8279</eissn><abstract>The kinetoplast DNA (kDNA) is the archetype of a two-dimensional Olympic network, composed of thousands of DNA minicircles and found in the mitochondrion of certain parasites. The evolution, replication, and self-assembly of this structure are fascinating open questions in biology that can also inform us how to realize synthetic Olympic networks . To obtain a deeper understanding of the structure and assembly of kDNA networks, we sequenced the kDNA genome and performed high-resolution atomic force microscopy and analysis of kDNA networks that had been partially digested by selected restriction enzymes. We discovered that these topological perturbations lead to networks with significantly different geometrical features and morphologies with respect to the unperturbed kDNA, and that these changes are strongly dependent on the class of DNA circles targeted by the restriction enzymes. Specifically, cleaving maxicircles leads to a dramatic reduction in network size once adsorbed onto the surface, while cleaving both maxicircles and a minor class of minicircles yields noncircular and deformed structures. We argue that our results are a consequence of a precise positioning of the maxicircles at the boundary of the network, and we discuss our findings in the context of kDNA biogenesis, design of artificial Olympic networks, and detection of perturbations.</abstract><doi>10.1103/PRXLife.2.013009</doi><orcidid>https://orcid.org/0000-0003-2186-6869</orcidid><orcidid>https://orcid.org/0000-0002-9769-6168</orcidid><orcidid>https://orcid.org/0000-0003-2640-6482</orcidid><orcidid>https://orcid.org/0000-0003-2132-5560</orcidid><orcidid>https://orcid.org/0000-0002-8767-2429</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2835-8279
ispartof PRX Life, 2024-02, Vol.2 (1), Article 013009
issn 2835-8279
2835-8279
language eng
recordid cdi_crossref_primary_10_1103_PRXLife_2_013009
source Alma/SFX Local Collection
title Single-Molecule Morphology of Topologically Digested Olympic Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Molecule%20Morphology%20of%20Topologically%20Digested%20Olympic%20Networks&rft.jtitle=PRX%20Life&rft.au=Ramakrishnan,%20Saminathan&rft.date=2024-02&rft.volume=2&rft.issue=1&rft.artnum=013009&rft.issn=2835-8279&rft.eissn=2835-8279&rft_id=info:doi/10.1103/PRXLife.2.013009&rft_dat=%3Ccrossref%3E10_1103_PRXLife_2_013009%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c839-173dc1544db49297574d9f3f9284340cac7b8717b913ab8730f8623869cebc6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true