Loading…
Path integral approach to random neural networks
Saved in:
Published in: | Physical review. E 2018-12, Vol.98 (6), Article 062120 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c313t-c3455e07c7c8c3bdfd026eaa71c65c5e963b28809715b5c293018621962680fe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c313t-c3455e07c7c8c3bdfd026eaa71c65c5e963b28809715b5c293018621962680fe3 |
container_end_page | |
container_issue | 6 |
container_start_page | |
container_title | Physical review. E |
container_volume | 98 |
creator | Crisanti, A. Sompolinsky, H. |
description | |
doi_str_mv | 10.1103/PhysRevE.98.062120 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevE_98_062120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevE_98_062120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-c3455e07c7c8c3bdfd026eaa71c65c5e963b28809715b5c293018621962680fe3</originalsourceid><addsrcrecordid>eNo9j9tKAzEYhIMoWGpfwKu8wK5_ks3pUko9QMEieh2y2X_daru7JFHp29ul6s3MwMAwHyHXDErGQNxsukN6xq9VaU0JijMOZ2TGKw0FgBTn_7mSl2SR0jsAMAVWMz4jsPG5o9s-41v0O-rHMQ4-dDQPNPq-Gfa0x8-p6TF_D_EjXZGL1u8SLn59Tl7vVi_Lh2L9dP-4vF0XQTCRj1pJiaCDDiaIumkb4Aq91ywoGSRaJWpuzPRC1jJwK4CZ43eruDLQopgTftoNcUgpYuvGuN37eHAM3ITt_rCdNe6ELX4AFOFLsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Path integral approach to random neural networks</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Crisanti, A. ; Sompolinsky, H.</creator><creatorcontrib>Crisanti, A. ; Sompolinsky, H.</creatorcontrib><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.98.062120</identifier><language>eng</language><ispartof>Physical review. E, 2018-12, Vol.98 (6), Article 062120</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-c3455e07c7c8c3bdfd026eaa71c65c5e963b28809715b5c293018621962680fe3</citedby><cites>FETCH-LOGICAL-c313t-c3455e07c7c8c3bdfd026eaa71c65c5e963b28809715b5c293018621962680fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Crisanti, A.</creatorcontrib><creatorcontrib>Sompolinsky, H.</creatorcontrib><title>Path integral approach to random neural networks</title><title>Physical review. E</title><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9j9tKAzEYhIMoWGpfwKu8wK5_ks3pUko9QMEieh2y2X_daru7JFHp29ul6s3MwMAwHyHXDErGQNxsukN6xq9VaU0JijMOZ2TGKw0FgBTn_7mSl2SR0jsAMAVWMz4jsPG5o9s-41v0O-rHMQ4-dDQPNPq-Gfa0x8-p6TF_D_EjXZGL1u8SLn59Tl7vVi_Lh2L9dP-4vF0XQTCRj1pJiaCDDiaIumkb4Aq91ywoGSRaJWpuzPRC1jJwK4CZ43eruDLQopgTftoNcUgpYuvGuN37eHAM3ITt_rCdNe6ELX4AFOFLsQ</recordid><startdate>20181213</startdate><enddate>20181213</enddate><creator>Crisanti, A.</creator><creator>Sompolinsky, H.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181213</creationdate><title>Path integral approach to random neural networks</title><author>Crisanti, A. ; Sompolinsky, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-c3455e07c7c8c3bdfd026eaa71c65c5e963b28809715b5c293018621962680fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crisanti, A.</creatorcontrib><creatorcontrib>Sompolinsky, H.</creatorcontrib><collection>CrossRef</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crisanti, A.</au><au>Sompolinsky, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path integral approach to random neural networks</atitle><jtitle>Physical review. E</jtitle><date>2018-12-13</date><risdate>2018</risdate><volume>98</volume><issue>6</issue><artnum>062120</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><doi>10.1103/PhysRevE.98.062120</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2018-12, Vol.98 (6), Article 062120 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_crossref_primary_10_1103_PhysRevE_98_062120 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Path integral approach to random neural networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path%20integral%20approach%20to%20random%20neural%20networks&rft.jtitle=Physical%20review.%20E&rft.au=Crisanti,%20A.&rft.date=2018-12-13&rft.volume=98&rft.issue=6&rft.artnum=062120&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.98.062120&rft_dat=%3Ccrossref%3E10_1103_PhysRevE_98_062120%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-c3455e07c7c8c3bdfd026eaa71c65c5e963b28809715b5c293018621962680fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |