Loading…

Link to Densify: Topological Transitions and Origin of Hysteresis During the Compression and Decompression of Amorphous Ices

In this Letter, we study the phase transition between amorphous ices and the nature of the hysteresis cycle separating them. We discover that a topological transition takes place as the system transforms from low-density amorphous ice (LDA) at low pressures to high-density amorphous ice (HDA) at hig...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2024-12, Vol.133 (26), Article 266102
Main Authors: Gutiérrez Fosado, Yair Augusto, Michieletto, Davide, Martelli, Fausto
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c132t-a4c1a69edb1f5276a4e8b3c186c18711716d20b1078d980cec25b7e793e7c7ac3
container_end_page
container_issue 26
container_start_page
container_title Physical review letters
container_volume 133
creator Gutiérrez Fosado, Yair Augusto
Michieletto, Davide
Martelli, Fausto
description In this Letter, we study the phase transition between amorphous ices and the nature of the hysteresis cycle separating them. We discover that a topological transition takes place as the system transforms from low-density amorphous ice (LDA) at low pressures to high-density amorphous ice (HDA) at high pressures. Specifically, we uncover that the hydrogen bond network (HBN) displays qualitatively different topologies in the LDA and HDA phases: the former characterized by disentangled loop motifs, with the latter displaying topologically complex long-lived Hopf-linked and knotted configurations. At the phase transition, the transient opening of the HBN topological motifs yields mechanical fragility on the macroscale. Our results provide a detailed microscopic description of the topological nature of the phase transition and the hysteresis cycle between amorphous ices. We argue that the topological transition discovered in this work may not only improve our understanding of amorphous ices, but also represent a generic mechanism for the densification of network-forming materials.
doi_str_mv 10.1103/PhysRevLett.133.266102
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevLett_133_266102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevLett_133_266102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c132t-a4c1a69edb1f5276a4e8b3c186c18711716d20b1078d980cec25b7e793e7c7ac3</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoOKevIHmBzpxkS1rvxqZuUJhIvS5perpFt6YknVDw4Y3Oi10cDnyc_8D_EXIPbALAxMPrbghv-JVj309AiAmXEhi_ICNgKksUwPSSjBgTkGSMqWtyE8IHYwy4TEfkO7ftJ-0dXWIbbDM80sJ1bu-21ug9LbyOtLeuDVS3Nd14u7UtdQ1dDaFHj8EGujx6225pv0O6cIcuwhADf_dLNGckxuYH57udOwa6NhhuyVWj9wHv_veYvD8_FYtVkm9e1ot5nhgQvE_01ICWGdYVNDOupJ5iWgkDqYwT-ymQNWdVrJvWWcoMGj6rFKpMoDJKGzEm8vTXeBeCx6bsvD1oP5TAyl-H5ZnDMjosTw7FDxyoauo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Link to Densify: Topological Transitions and Origin of Hysteresis During the Compression and Decompression of Amorphous Ices</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Gutiérrez Fosado, Yair Augusto ; Michieletto, Davide ; Martelli, Fausto</creator><creatorcontrib>Gutiérrez Fosado, Yair Augusto ; Michieletto, Davide ; Martelli, Fausto</creatorcontrib><description>In this Letter, we study the phase transition between amorphous ices and the nature of the hysteresis cycle separating them. We discover that a topological transition takes place as the system transforms from low-density amorphous ice (LDA) at low pressures to high-density amorphous ice (HDA) at high pressures. Specifically, we uncover that the hydrogen bond network (HBN) displays qualitatively different topologies in the LDA and HDA phases: the former characterized by disentangled loop motifs, with the latter displaying topologically complex long-lived Hopf-linked and knotted configurations. At the phase transition, the transient opening of the HBN topological motifs yields mechanical fragility on the macroscale. Our results provide a detailed microscopic description of the topological nature of the phase transition and the hysteresis cycle between amorphous ices. We argue that the topological transition discovered in this work may not only improve our understanding of amorphous ices, but also represent a generic mechanism for the densification of network-forming materials.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.133.266102</identifier><language>eng</language><ispartof>Physical review letters, 2024-12, Vol.133 (26), Article 266102</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c132t-a4c1a69edb1f5276a4e8b3c186c18711716d20b1078d980cec25b7e793e7c7ac3</cites><orcidid>0000-0002-5350-8225 ; 0000-0001-5284-6313 ; 0000-0003-2186-6869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gutiérrez Fosado, Yair Augusto</creatorcontrib><creatorcontrib>Michieletto, Davide</creatorcontrib><creatorcontrib>Martelli, Fausto</creatorcontrib><title>Link to Densify: Topological Transitions and Origin of Hysteresis During the Compression and Decompression of Amorphous Ices</title><title>Physical review letters</title><description>In this Letter, we study the phase transition between amorphous ices and the nature of the hysteresis cycle separating them. We discover that a topological transition takes place as the system transforms from low-density amorphous ice (LDA) at low pressures to high-density amorphous ice (HDA) at high pressures. Specifically, we uncover that the hydrogen bond network (HBN) displays qualitatively different topologies in the LDA and HDA phases: the former characterized by disentangled loop motifs, with the latter displaying topologically complex long-lived Hopf-linked and knotted configurations. At the phase transition, the transient opening of the HBN topological motifs yields mechanical fragility on the macroscale. Our results provide a detailed microscopic description of the topological nature of the phase transition and the hysteresis cycle between amorphous ices. We argue that the topological transition discovered in this work may not only improve our understanding of amorphous ices, but also represent a generic mechanism for the densification of network-forming materials.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkNFKwzAUhoMoOKevIHmBzpxkS1rvxqZuUJhIvS5perpFt6YknVDw4Y3Oi10cDnyc_8D_EXIPbALAxMPrbghv-JVj309AiAmXEhi_ICNgKksUwPSSjBgTkGSMqWtyE8IHYwy4TEfkO7ftJ-0dXWIbbDM80sJ1bu-21ug9LbyOtLeuDVS3Nd14u7UtdQ1dDaFHj8EGujx6225pv0O6cIcuwhADf_dLNGckxuYH57udOwa6NhhuyVWj9wHv_veYvD8_FYtVkm9e1ot5nhgQvE_01ICWGdYVNDOupJ5iWgkDqYwT-ymQNWdVrJvWWcoMGj6rFKpMoDJKGzEm8vTXeBeCx6bsvD1oP5TAyl-H5ZnDMjosTw7FDxyoauo</recordid><startdate>20241226</startdate><enddate>20241226</enddate><creator>Gutiérrez Fosado, Yair Augusto</creator><creator>Michieletto, Davide</creator><creator>Martelli, Fausto</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5350-8225</orcidid><orcidid>https://orcid.org/0000-0001-5284-6313</orcidid><orcidid>https://orcid.org/0000-0003-2186-6869</orcidid></search><sort><creationdate>20241226</creationdate><title>Link to Densify: Topological Transitions and Origin of Hysteresis During the Compression and Decompression of Amorphous Ices</title><author>Gutiérrez Fosado, Yair Augusto ; Michieletto, Davide ; Martelli, Fausto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c132t-a4c1a69edb1f5276a4e8b3c186c18711716d20b1078d980cec25b7e793e7c7ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutiérrez Fosado, Yair Augusto</creatorcontrib><creatorcontrib>Michieletto, Davide</creatorcontrib><creatorcontrib>Martelli, Fausto</creatorcontrib><collection>CrossRef</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutiérrez Fosado, Yair Augusto</au><au>Michieletto, Davide</au><au>Martelli, Fausto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Link to Densify: Topological Transitions and Origin of Hysteresis During the Compression and Decompression of Amorphous Ices</atitle><jtitle>Physical review letters</jtitle><date>2024-12-26</date><risdate>2024</risdate><volume>133</volume><issue>26</issue><artnum>266102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>In this Letter, we study the phase transition between amorphous ices and the nature of the hysteresis cycle separating them. We discover that a topological transition takes place as the system transforms from low-density amorphous ice (LDA) at low pressures to high-density amorphous ice (HDA) at high pressures. Specifically, we uncover that the hydrogen bond network (HBN) displays qualitatively different topologies in the LDA and HDA phases: the former characterized by disentangled loop motifs, with the latter displaying topologically complex long-lived Hopf-linked and knotted configurations. At the phase transition, the transient opening of the HBN topological motifs yields mechanical fragility on the macroscale. Our results provide a detailed microscopic description of the topological nature of the phase transition and the hysteresis cycle between amorphous ices. We argue that the topological transition discovered in this work may not only improve our understanding of amorphous ices, but also represent a generic mechanism for the densification of network-forming materials.</abstract><doi>10.1103/PhysRevLett.133.266102</doi><orcidid>https://orcid.org/0000-0002-5350-8225</orcidid><orcidid>https://orcid.org/0000-0001-5284-6313</orcidid><orcidid>https://orcid.org/0000-0003-2186-6869</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2024-12, Vol.133 (26), Article 266102
issn 0031-9007
1079-7114
language eng
recordid cdi_crossref_primary_10_1103_PhysRevLett_133_266102
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Link to Densify: Topological Transitions and Origin of Hysteresis During the Compression and Decompression of Amorphous Ices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Link%20to%20Densify:%20Topological%20Transitions%20and%20Origin%20of%20Hysteresis%20During%20the%20Compression%20and%20Decompression%20of%20Amorphous%20Ices&rft.jtitle=Physical%20review%20letters&rft.au=Guti%C3%A9rrez%20Fosado,%20Yair%20Augusto&rft.date=2024-12-26&rft.volume=133&rft.issue=26&rft.artnum=266102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.133.266102&rft_dat=%3Ccrossref%3E10_1103_PhysRevLett_133_266102%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c132t-a4c1a69edb1f5276a4e8b3c186c18711716d20b1078d980cec25b7e793e7c7ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true