Loading…

New Insight into Phaeodactylum Tricornutum Fatty Acid Metabolism. Cloning and Functional Characterization of Plastidial and Microsomal δ12-Fatty Acid Desaturases

In contrast to 16:3 plants like rapeseed (Brassica napus), which contain α-linolenic acid ($18\colon 3^{\Delta 9,12,15}$) and hexadecatrienoic acid ($16\colon 3^{\Delta 7,10,13}$) as major polyunsaturated fatty acids in leaves, the silica-less diatom Phaeodactylum tricornutum contains eicosapentaeno...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2003-04, Vol.131 (4), p.1648-1660
Main Authors: Domergue, Frédéric, Patricia Spiekermann, Lerchl, Jens, Christoph Beckmann, Oliver Kilian, Peter G. Kroth, Wilhem Boland, Zähringer, Ulrich, Heinz, Ernst
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2407-52485fd89a1810b7055fd1261a713ceb2a8374818a587bb78c98f684a2b0c3243
cites cdi_FETCH-LOGICAL-c2407-52485fd89a1810b7055fd1261a713ceb2a8374818a587bb78c98f684a2b0c3243
container_end_page 1660
container_issue 4
container_start_page 1648
container_title Plant physiology (Bethesda)
container_volume 131
creator Domergue, Frédéric
Patricia Spiekermann
Lerchl, Jens
Christoph Beckmann
Oliver Kilian
Peter G. Kroth
Wilhem Boland
Zähringer, Ulrich
Heinz, Ernst
description In contrast to 16:3 plants like rapeseed (Brassica napus), which contain α-linolenic acid ($18\colon 3^{\Delta 9,12,15}$) and hexadecatrienoic acid ($16\colon 3^{\Delta 7,10,13}$) as major polyunsaturated fatty acids in leaves, the silica-less diatom Phaeodactylum tricornutum contains eicosapentaenoic acid (EPA; $20\colon 5^{\Delta 5,8,11,14,17}$) and a different isomer of hexadecatrienoic acid ($16\colon 3^{\Delta 6,9,12}$). In this report, we describe the characterization of two cDNAs having sequence homology to Δ12-fatty acid desaturases from higher plants. These cDNAs were shown to code for a microsomal and a plastidial Δ12-desaturase (PtFAD2 and PtFAD6, respectively) by heterologous expression in yeast (Saccharomyces cerevisiae) and Synechococcus, respectively. Using these systems in the presence of exogenously supplied fatty acids, the substrate specificities of the two desaturases were determined and compared with those of the corresponding rapeseed enzymes (BnFAD2 and BnFAD6). The microsomal desaturases were similarly specific for oleic acid ($18\colon 1^{\Delta 9}$), suggesting that PtFAD2 is involved in the biosynthesis of EPA. In contrast, the plastidial desaturase from the higher plant and the diatom clearly differed. Although the rapeseed plastidial desaturase showed high activity toward the ω9-fatty acids $18\colon 1^{\Delta 9}$ and $16\colon 1^{\Delta 7}$, in line with the fatty acid composition of rapeseed leaves, the enzyme of P. tricornutum was highly specific for $16\colon 1^{\Delta 9}$. Our results indicate that in contrast to EPA, which is synthesized in the microsomes, the hexadecatrienoic acid isomer found in P. tricornutum ($16\colon 3^{\Delta 6,9,12}$) is of plastidial origin.
doi_str_mv 10.1104/pp.102.018317
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1104_pp_102_018317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4281034</jstor_id><sourcerecordid>4281034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2407-52485fd89a1810b7055fd1261a713ceb2a8374818a587bb78c98f684a2b0c3243</originalsourceid><addsrcrecordid>eNpNUbFuGzEMFYIUiON27NZBS8dzRUnnk8fAjVsDdurBnQ88nc5WcJYOkozC-Zx8Q74j31QZDtpMfOR7JB9IQj4DmwAw-W0YJsD4hIESUF2REZSCF7yU6pqMGMuYKTW7IbcxPjLGQIAckecH84cuXbS7faLWJU83ezS-RZ1O_fFAt8FqH9wxZbzAlE70TtuWrk3Cxvc2HiZ03ntn3Y6ia-ni6HSy3mFP53sMeYoJ9gnPJeo7uukxJtvaTJ_Va6uDj_6Q09cX4MW7Bd9NxHQMGE38SD502Efz6S2Oye_F_Xb-s1j9-rGc360KzSWripJLVXatmiEoYE3FypwBnwJWILRpOCpRSQUKS1U1TaX0THVTJZE3TAsuxZgUl7lnUzGYrh6CPWA41cDq84HrYciQ15cDZ_3Xi37AqLHvAjpt4_8mqSpg-Qdj8uWie4zJh3-85NmmkOIvIS-HHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New Insight into Phaeodactylum Tricornutum Fatty Acid Metabolism. Cloning and Functional Characterization of Plastidial and Microsomal δ12-Fatty Acid Desaturases</title><source>Access via JSTOR</source><source>Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)</source><creator>Domergue, Frédéric ; Patricia Spiekermann ; Lerchl, Jens ; Christoph Beckmann ; Oliver Kilian ; Peter G. Kroth ; Wilhem Boland ; Zähringer, Ulrich ; Heinz, Ernst</creator><creatorcontrib>Domergue, Frédéric ; Patricia Spiekermann ; Lerchl, Jens ; Christoph Beckmann ; Oliver Kilian ; Peter G. Kroth ; Wilhem Boland ; Zähringer, Ulrich ; Heinz, Ernst</creatorcontrib><description>In contrast to 16:3 plants like rapeseed (Brassica napus), which contain α-linolenic acid ($18\colon 3^{\Delta 9,12,15}$) and hexadecatrienoic acid ($16\colon 3^{\Delta 7,10,13}$) as major polyunsaturated fatty acids in leaves, the silica-less diatom Phaeodactylum tricornutum contains eicosapentaenoic acid (EPA; $20\colon 5^{\Delta 5,8,11,14,17}$) and a different isomer of hexadecatrienoic acid ($16\colon 3^{\Delta 6,9,12}$). In this report, we describe the characterization of two cDNAs having sequence homology to Δ12-fatty acid desaturases from higher plants. These cDNAs were shown to code for a microsomal and a plastidial Δ12-desaturase (PtFAD2 and PtFAD6, respectively) by heterologous expression in yeast (Saccharomyces cerevisiae) and Synechococcus, respectively. Using these systems in the presence of exogenously supplied fatty acids, the substrate specificities of the two desaturases were determined and compared with those of the corresponding rapeseed enzymes (BnFAD2 and BnFAD6). The microsomal desaturases were similarly specific for oleic acid ($18\colon 1^{\Delta 9}$), suggesting that PtFAD2 is involved in the biosynthesis of EPA. In contrast, the plastidial desaturase from the higher plant and the diatom clearly differed. Although the rapeseed plastidial desaturase showed high activity toward the ω9-fatty acids $18\colon 1^{\Delta 9}$ and $16\colon 1^{\Delta 7}$, in line with the fatty acid composition of rapeseed leaves, the enzyme of P. tricornutum was highly specific for $16\colon 1^{\Delta 9}$. Our results indicate that in contrast to EPA, which is synthesized in the microsomes, the hexadecatrienoic acid isomer found in P. tricornutum ($16\colon 3^{\Delta 6,9,12}$) is of plastidial origin.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.102.018317</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Agronomy. Soil science and plant productions ; Biochemical Processes and Macromolecular Structures ; Biological and medical sciences ; Canola ; Chemical desaturation ; Diatoms ; Economic plant physiology ; Enzymes ; Fatty acids ; Fundamental and applied biological sciences. Psychology ; Metabolism ; Metabolism. Physicochemical requirements ; Nitrogen metabolism and other ones (excepting carbon metabolism) ; Nutrition. Photosynthesis. Respiration. Metabolism ; Open reading frames ; Plant physiology and development ; Plastids ; Proteins ; Substrate specificity ; Yeasts</subject><ispartof>Plant physiology (Bethesda), 2003-04, Vol.131 (4), p.1648-1660</ispartof><rights>Copyright 2003 American Society of Plant Biologists</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2407-52485fd89a1810b7055fd1261a713ceb2a8374818a587bb78c98f684a2b0c3243</citedby><cites>FETCH-LOGICAL-c2407-52485fd89a1810b7055fd1261a713ceb2a8374818a587bb78c98f684a2b0c3243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4281034$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4281034$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14871015$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Domergue, Frédéric</creatorcontrib><creatorcontrib>Patricia Spiekermann</creatorcontrib><creatorcontrib>Lerchl, Jens</creatorcontrib><creatorcontrib>Christoph Beckmann</creatorcontrib><creatorcontrib>Oliver Kilian</creatorcontrib><creatorcontrib>Peter G. Kroth</creatorcontrib><creatorcontrib>Wilhem Boland</creatorcontrib><creatorcontrib>Zähringer, Ulrich</creatorcontrib><creatorcontrib>Heinz, Ernst</creatorcontrib><title>New Insight into Phaeodactylum Tricornutum Fatty Acid Metabolism. Cloning and Functional Characterization of Plastidial and Microsomal δ12-Fatty Acid Desaturases</title><title>Plant physiology (Bethesda)</title><description>In contrast to 16:3 plants like rapeseed (Brassica napus), which contain α-linolenic acid ($18\colon 3^{\Delta 9,12,15}$) and hexadecatrienoic acid ($16\colon 3^{\Delta 7,10,13}$) as major polyunsaturated fatty acids in leaves, the silica-less diatom Phaeodactylum tricornutum contains eicosapentaenoic acid (EPA; $20\colon 5^{\Delta 5,8,11,14,17}$) and a different isomer of hexadecatrienoic acid ($16\colon 3^{\Delta 6,9,12}$). In this report, we describe the characterization of two cDNAs having sequence homology to Δ12-fatty acid desaturases from higher plants. These cDNAs were shown to code for a microsomal and a plastidial Δ12-desaturase (PtFAD2 and PtFAD6, respectively) by heterologous expression in yeast (Saccharomyces cerevisiae) and Synechococcus, respectively. Using these systems in the presence of exogenously supplied fatty acids, the substrate specificities of the two desaturases were determined and compared with those of the corresponding rapeseed enzymes (BnFAD2 and BnFAD6). The microsomal desaturases were similarly specific for oleic acid ($18\colon 1^{\Delta 9}$), suggesting that PtFAD2 is involved in the biosynthesis of EPA. In contrast, the plastidial desaturase from the higher plant and the diatom clearly differed. Although the rapeseed plastidial desaturase showed high activity toward the ω9-fatty acids $18\colon 1^{\Delta 9}$ and $16\colon 1^{\Delta 7}$, in line with the fatty acid composition of rapeseed leaves, the enzyme of P. tricornutum was highly specific for $16\colon 1^{\Delta 9}$. Our results indicate that in contrast to EPA, which is synthesized in the microsomes, the hexadecatrienoic acid isomer found in P. tricornutum ($16\colon 3^{\Delta 6,9,12}$) is of plastidial origin.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Biochemical Processes and Macromolecular Structures</subject><subject>Biological and medical sciences</subject><subject>Canola</subject><subject>Chemical desaturation</subject><subject>Diatoms</subject><subject>Economic plant physiology</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Metabolism</subject><subject>Metabolism. Physicochemical requirements</subject><subject>Nitrogen metabolism and other ones (excepting carbon metabolism)</subject><subject>Nutrition. Photosynthesis. Respiration. Metabolism</subject><subject>Open reading frames</subject><subject>Plant physiology and development</subject><subject>Plastids</subject><subject>Proteins</subject><subject>Substrate specificity</subject><subject>Yeasts</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpNUbFuGzEMFYIUiON27NZBS8dzRUnnk8fAjVsDdurBnQ88nc5WcJYOkozC-Zx8Q74j31QZDtpMfOR7JB9IQj4DmwAw-W0YJsD4hIESUF2REZSCF7yU6pqMGMuYKTW7IbcxPjLGQIAckecH84cuXbS7faLWJU83ezS-RZ1O_fFAt8FqH9wxZbzAlE70TtuWrk3Cxvc2HiZ03ntn3Y6ia-ni6HSy3mFP53sMeYoJ9gnPJeo7uukxJtvaTJ_Va6uDj_6Q09cX4MW7Bd9NxHQMGE38SD502Efz6S2Oye_F_Xb-s1j9-rGc360KzSWripJLVXatmiEoYE3FypwBnwJWILRpOCpRSQUKS1U1TaX0THVTJZE3TAsuxZgUl7lnUzGYrh6CPWA41cDq84HrYciQ15cDZ_3Xi37AqLHvAjpt4_8mqSpg-Qdj8uWie4zJh3-85NmmkOIvIS-HHQ</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Domergue, Frédéric</creator><creator>Patricia Spiekermann</creator><creator>Lerchl, Jens</creator><creator>Christoph Beckmann</creator><creator>Oliver Kilian</creator><creator>Peter G. Kroth</creator><creator>Wilhem Boland</creator><creator>Zähringer, Ulrich</creator><creator>Heinz, Ernst</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030401</creationdate><title>New Insight into Phaeodactylum Tricornutum Fatty Acid Metabolism. Cloning and Functional Characterization of Plastidial and Microsomal δ12-Fatty Acid Desaturases</title><author>Domergue, Frédéric ; Patricia Spiekermann ; Lerchl, Jens ; Christoph Beckmann ; Oliver Kilian ; Peter G. Kroth ; Wilhem Boland ; Zähringer, Ulrich ; Heinz, Ernst</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2407-52485fd89a1810b7055fd1261a713ceb2a8374818a587bb78c98f684a2b0c3243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Biochemical Processes and Macromolecular Structures</topic><topic>Biological and medical sciences</topic><topic>Canola</topic><topic>Chemical desaturation</topic><topic>Diatoms</topic><topic>Economic plant physiology</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Metabolism</topic><topic>Metabolism. Physicochemical requirements</topic><topic>Nitrogen metabolism and other ones (excepting carbon metabolism)</topic><topic>Nutrition. Photosynthesis. Respiration. Metabolism</topic><topic>Open reading frames</topic><topic>Plant physiology and development</topic><topic>Plastids</topic><topic>Proteins</topic><topic>Substrate specificity</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Domergue, Frédéric</creatorcontrib><creatorcontrib>Patricia Spiekermann</creatorcontrib><creatorcontrib>Lerchl, Jens</creatorcontrib><creatorcontrib>Christoph Beckmann</creatorcontrib><creatorcontrib>Oliver Kilian</creatorcontrib><creatorcontrib>Peter G. Kroth</creatorcontrib><creatorcontrib>Wilhem Boland</creatorcontrib><creatorcontrib>Zähringer, Ulrich</creatorcontrib><creatorcontrib>Heinz, Ernst</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Domergue, Frédéric</au><au>Patricia Spiekermann</au><au>Lerchl, Jens</au><au>Christoph Beckmann</au><au>Oliver Kilian</au><au>Peter G. Kroth</au><au>Wilhem Boland</au><au>Zähringer, Ulrich</au><au>Heinz, Ernst</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Insight into Phaeodactylum Tricornutum Fatty Acid Metabolism. Cloning and Functional Characterization of Plastidial and Microsomal δ12-Fatty Acid Desaturases</atitle><jtitle>Plant physiology (Bethesda)</jtitle><date>2003-04-01</date><risdate>2003</risdate><volume>131</volume><issue>4</issue><spage>1648</spage><epage>1660</epage><pages>1648-1660</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>In contrast to 16:3 plants like rapeseed (Brassica napus), which contain α-linolenic acid ($18\colon 3^{\Delta 9,12,15}$) and hexadecatrienoic acid ($16\colon 3^{\Delta 7,10,13}$) as major polyunsaturated fatty acids in leaves, the silica-less diatom Phaeodactylum tricornutum contains eicosapentaenoic acid (EPA; $20\colon 5^{\Delta 5,8,11,14,17}$) and a different isomer of hexadecatrienoic acid ($16\colon 3^{\Delta 6,9,12}$). In this report, we describe the characterization of two cDNAs having sequence homology to Δ12-fatty acid desaturases from higher plants. These cDNAs were shown to code for a microsomal and a plastidial Δ12-desaturase (PtFAD2 and PtFAD6, respectively) by heterologous expression in yeast (Saccharomyces cerevisiae) and Synechococcus, respectively. Using these systems in the presence of exogenously supplied fatty acids, the substrate specificities of the two desaturases were determined and compared with those of the corresponding rapeseed enzymes (BnFAD2 and BnFAD6). The microsomal desaturases were similarly specific for oleic acid ($18\colon 1^{\Delta 9}$), suggesting that PtFAD2 is involved in the biosynthesis of EPA. In contrast, the plastidial desaturase from the higher plant and the diatom clearly differed. Although the rapeseed plastidial desaturase showed high activity toward the ω9-fatty acids $18\colon 1^{\Delta 9}$ and $16\colon 1^{\Delta 7}$, in line with the fatty acid composition of rapeseed leaves, the enzyme of P. tricornutum was highly specific for $16\colon 1^{\Delta 9}$. Our results indicate that in contrast to EPA, which is synthesized in the microsomes, the hexadecatrienoic acid isomer found in P. tricornutum ($16\colon 3^{\Delta 6,9,12}$) is of plastidial origin.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><doi>10.1104/pp.102.018317</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2003-04, Vol.131 (4), p.1648-1660
issn 0032-0889
1532-2548
language eng
recordid cdi_crossref_primary_10_1104_pp_102_018317
source Access via JSTOR; Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)
subjects Agronomy. Soil science and plant productions
Biochemical Processes and Macromolecular Structures
Biological and medical sciences
Canola
Chemical desaturation
Diatoms
Economic plant physiology
Enzymes
Fatty acids
Fundamental and applied biological sciences. Psychology
Metabolism
Metabolism. Physicochemical requirements
Nitrogen metabolism and other ones (excepting carbon metabolism)
Nutrition. Photosynthesis. Respiration. Metabolism
Open reading frames
Plant physiology and development
Plastids
Proteins
Substrate specificity
Yeasts
title New Insight into Phaeodactylum Tricornutum Fatty Acid Metabolism. Cloning and Functional Characterization of Plastidial and Microsomal δ12-Fatty Acid Desaturases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Insight%20into%20Phaeodactylum%20Tricornutum%20Fatty%20Acid%20Metabolism.%20Cloning%20and%20Functional%20Characterization%20of%20Plastidial%20and%20Microsomal%20%CE%B412-Fatty%20Acid%20Desaturases&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Domergue,%20Fr%C3%A9d%C3%A9ric&rft.date=2003-04-01&rft.volume=131&rft.issue=4&rft.spage=1648&rft.epage=1660&rft.pages=1648-1660&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.102.018317&rft_dat=%3Cjstor_cross%3E4281034%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2407-52485fd89a1810b7055fd1261a713ceb2a8374818a587bb78c98f684a2b0c3243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=4281034&rfr_iscdi=true