Loading…

Arabidopsis CYP707A s Encode (+)-Abscisic Acid 8′-Hydroxylase, a Key Enzyme in the Oxidative Catabolism of Abscisic Acid

Abscisic acid (ABA) is involved in a number of critical processes in normal growth and development as well as in adaptive responses to environmental stresses. For correct and accurate actions, a physiologically active ABA level is controlled through fine-tuning of de novo biosynthesis and catabolism...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2004-04, Vol.134 (4), p.1439-1449
Main Authors: Saito, Shigeki, Hirai, Nobuhiro, Matsumoto, Chiaki, Ohigashi, Hajime, Ohta, Daisaku, Sakata, Kanzo, Mizutani, Masaharu
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abscisic acid (ABA) is involved in a number of critical processes in normal growth and development as well as in adaptive responses to environmental stresses. For correct and accurate actions, a physiologically active ABA level is controlled through fine-tuning of de novo biosynthesis and catabolism. The hydroxylation at the 8′-position of ABA is known as the key step of ABA catabolism, and this reaction is catalyzed by ABA 8′-hydroxylase, a cytochrome P450. Here, we demonstrate CYP707As as the P450 responsible for the 8′-hydroxylation of (+)-ABA. First, all four CYP707A cDNAs were cloned from Arabidopsis and used for the production of the recombinant proteins in insect cells using a baculovirus system. The insect cells expressing CYP707A3 efficiently metabolized (+)-ABA to yield phaseic acid, the isomerized form of 8′-hydroxy-ABA. The microsomes from the insect cells exhibited very strong activity of 8′-hydroxylation of (+)-ABA (K  m = 1.3 μ  m and k  cat = 15 min−1). The solubilized CYP707A3 protein bound (+)-ABA with the binding constant K  s = 3.5 μ  m, but did not bind (−)-ABA. Detailed analyses of the reaction products confirmed that CYP707A3 does not have the isomerization activity of 8′-hydroxy-ABA to phaseic acid. Further experiments revealed that Arabidopsis CYP707A1 and CYP707A4 also encode ABA 8′-hydroxylase. The transcripts of the CYP707A genes increased in response to salt, osmotic, and dehydration stresses as well as ABA. These results establish that the CYP707A family plays a key role in regulating the ABA level through the 8′-hydroxylation of (+)-ABA.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.103.037614