Loading…

A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee

Chlorogenic acids (CGAs) are a group of phenolic secondary metabolites produced by certain plant species and an important component of coffee (Coffea spp.). The CGAs have been implicated in biotic and abiotic stress responses, while the related shikimate esters are key intermediates for lignin biosy...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2012-09, Vol.160 (1), p.249-260
Main Authors: Lallemand, Laura A., Zubieta, Chloe, Lee, Soon Goo, Wang, Yechun, Acajjaoui, Samira, Timmins, Joanna, McSweeney, Sean, Jez, Joseph M., McCarthy, James G., McCarthy, Andrew A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c450t-ca43b3f296c8cf8d9b7802e64777f2f9a871449fbd13db0bf8a3d88ce361dfcf3
cites cdi_FETCH-LOGICAL-c450t-ca43b3f296c8cf8d9b7802e64777f2f9a871449fbd13db0bf8a3d88ce361dfcf3
container_end_page 260
container_issue 1
container_start_page 249
container_title Plant physiology (Bethesda)
container_volume 160
creator Lallemand, Laura A.
Zubieta, Chloe
Lee, Soon Goo
Wang, Yechun
Acajjaoui, Samira
Timmins, Joanna
McSweeney, Sean
Jez, Joseph M.
McCarthy, James G.
McCarthy, Andrew A.
description Chlorogenic acids (CGAs) are a group of phenolic secondary metabolites produced by certain plant species and an important component of coffee (Coffea spp.). The CGAs have been implicated in biotic and abiotic stress responses, while the related shikimate esters are key intermediates for lignin biosynthesis. Here, two hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyl transferases (HCT/HQT) from coffee were biochemically characterized. We show, to our knowledge for the first time, that in vitro, HCT is capable of synthesizing the 3,5-O-dicaffeoylquinic acid diester, a major constituent of the immature coffee grain. In order to further understand the substrate specificity and catalytic mechanism of the HCT/HQT, we performed structural and mutagenesis studies of HCT. The three-dimensional structure of a native HCT and a proteolytically stable lysine mutant enabled the identification of important residues involved in substrate specificity and catalysis. Site-directed mutagenesis confirmed the role of residues leucine-400 and phenylalanine-402 in substrate specificity and of histidine-153 and the valine-31 to proline-37 loop in catalysis. In addition, the histidine-154-asparagine mutant was observed to produce 4-fold more dichlorogenic acids compared with the native protein. These data provide, to our knowledge, the first structural characterization of a HCT and, in conjunction with the biochemical and mutagenesis studies presented here, delineate the underlying molecular-level determinants for substrate specificity and catalysis. This work has potential applications in fine-tuning the levels of shikimate and quinate esters (CGAs including dichlorogenic acids) in different plant species in order to generate reduced or elevated levels of the desired target compounds.
doi_str_mv 10.1104/pp.112.202051
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1104_pp_112_202051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23274692</jstor_id><sourcerecordid>23274692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-ca43b3f296c8cf8d9b7802e64777f2f9a871449fbd13db0bf8a3d88ce361dfcf3</originalsourceid><addsrcrecordid>eNpF0D1PwzAQBmALgWgpjIwgL4wp9tlJnLFEFJCKGPhYI8exaao0juxk6L_HJYVO7-nu0Q0vQteUzCkl_L7rQsIcCJCYnqApjRlEEHNxiqaEhJkIkU3QhfcbQghllJ-jCYAAAEqm6GuB33s3qH5wssEP0tceG-twv9b4obZ-14Zpv7Tmd_cqN-Garxvr7Ldua4UXqq48XtqhrXDd4twao_UlOjOy8frqkDP0uXz8yJ-j1dvTS75YRYrHpI-U5KxkBrJECWVElZWpIKATnqapAZNJkVLOM1NWlFUlKY2QrBJCaZbQyijDZiga_ypnvXfaFJ2rt9LtCkqKfT9F14WEYuwn-NvRd0O51dW__iskgLsDkF7JxjjZqtofXcKAZ4wFdzO6je-tO94ZpDzJgP0AfPp3DA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Lallemand, Laura A. ; Zubieta, Chloe ; Lee, Soon Goo ; Wang, Yechun ; Acajjaoui, Samira ; Timmins, Joanna ; McSweeney, Sean ; Jez, Joseph M. ; McCarthy, James G. ; McCarthy, Andrew A.</creator><creatorcontrib>Lallemand, Laura A. ; Zubieta, Chloe ; Lee, Soon Goo ; Wang, Yechun ; Acajjaoui, Samira ; Timmins, Joanna ; McSweeney, Sean ; Jez, Joseph M. ; McCarthy, James G. ; McCarthy, Andrew A.</creatorcontrib><description>Chlorogenic acids (CGAs) are a group of phenolic secondary metabolites produced by certain plant species and an important component of coffee (Coffea spp.). The CGAs have been implicated in biotic and abiotic stress responses, while the related shikimate esters are key intermediates for lignin biosynthesis. Here, two hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyl transferases (HCT/HQT) from coffee were biochemically characterized. We show, to our knowledge for the first time, that in vitro, HCT is capable of synthesizing the 3,5-O-dicaffeoylquinic acid diester, a major constituent of the immature coffee grain. In order to further understand the substrate specificity and catalytic mechanism of the HCT/HQT, we performed structural and mutagenesis studies of HCT. The three-dimensional structure of a native HCT and a proteolytically stable lysine mutant enabled the identification of important residues involved in substrate specificity and catalysis. Site-directed mutagenesis confirmed the role of residues leucine-400 and phenylalanine-402 in substrate specificity and of histidine-153 and the valine-31 to proline-37 loop in catalysis. In addition, the histidine-154-asparagine mutant was observed to produce 4-fold more dichlorogenic acids compared with the native protein. These data provide, to our knowledge, the first structural characterization of a HCT and, in conjunction with the biochemical and mutagenesis studies presented here, delineate the underlying molecular-level determinants for substrate specificity and catalysis. This work has potential applications in fine-tuning the levels of shikimate and quinate esters (CGAs including dichlorogenic acids) in different plant species in order to generate reduced or elevated levels of the desired target compounds.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.112.202051</identifier><identifier>PMID: 22822210</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Active sites ; Acyltransferases - chemistry ; Acyltransferases - genetics ; Amino Acid Sequence ; Amino Acids - chemistry ; BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES ; Biochemistry ; Biological and medical sciences ; Biosynthesis ; Catalytic Domain ; Chlorogenic Acid - chemistry ; Chromatography, High Pressure Liquid ; Coffea - chemistry ; Coffea - genetics ; Coffee - chemistry ; Crystal structure ; Crystals ; Enzyme Activation ; Enzymes ; Escherichia coli - chemistry ; Escherichia coli - genetics ; Esters - chemistry ; Fundamental and applied biological sciences. Psychology ; Hematocrit ; Isomerism ; Molecular Conformation ; Molecules ; Mutagenesis, Site-Directed ; Plant physiology and development ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plants ; Protein Biosynthesis ; Quinic Acid - analogs &amp; derivatives ; Quinic Acid - chemistry ; Seeds - chemistry ; Seeds - genetics ; Sequence Alignment ; Substrate Specificity</subject><ispartof>Plant physiology (Bethesda), 2012-09, Vol.160 (1), p.249-260</ispartof><rights>2012 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-ca43b3f296c8cf8d9b7802e64777f2f9a871449fbd13db0bf8a3d88ce361dfcf3</citedby><cites>FETCH-LOGICAL-c450t-ca43b3f296c8cf8d9b7802e64777f2f9a871449fbd13db0bf8a3d88ce361dfcf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23274692$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23274692$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26324933$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22822210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lallemand, Laura A.</creatorcontrib><creatorcontrib>Zubieta, Chloe</creatorcontrib><creatorcontrib>Lee, Soon Goo</creatorcontrib><creatorcontrib>Wang, Yechun</creatorcontrib><creatorcontrib>Acajjaoui, Samira</creatorcontrib><creatorcontrib>Timmins, Joanna</creatorcontrib><creatorcontrib>McSweeney, Sean</creatorcontrib><creatorcontrib>Jez, Joseph M.</creatorcontrib><creatorcontrib>McCarthy, James G.</creatorcontrib><creatorcontrib>McCarthy, Andrew A.</creatorcontrib><title>A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Chlorogenic acids (CGAs) are a group of phenolic secondary metabolites produced by certain plant species and an important component of coffee (Coffea spp.). The CGAs have been implicated in biotic and abiotic stress responses, while the related shikimate esters are key intermediates for lignin biosynthesis. Here, two hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyl transferases (HCT/HQT) from coffee were biochemically characterized. We show, to our knowledge for the first time, that in vitro, HCT is capable of synthesizing the 3,5-O-dicaffeoylquinic acid diester, a major constituent of the immature coffee grain. In order to further understand the substrate specificity and catalytic mechanism of the HCT/HQT, we performed structural and mutagenesis studies of HCT. The three-dimensional structure of a native HCT and a proteolytically stable lysine mutant enabled the identification of important residues involved in substrate specificity and catalysis. Site-directed mutagenesis confirmed the role of residues leucine-400 and phenylalanine-402 in substrate specificity and of histidine-153 and the valine-31 to proline-37 loop in catalysis. In addition, the histidine-154-asparagine mutant was observed to produce 4-fold more dichlorogenic acids compared with the native protein. These data provide, to our knowledge, the first structural characterization of a HCT and, in conjunction with the biochemical and mutagenesis studies presented here, delineate the underlying molecular-level determinants for substrate specificity and catalysis. This work has potential applications in fine-tuning the levels of shikimate and quinate esters (CGAs including dichlorogenic acids) in different plant species in order to generate reduced or elevated levels of the desired target compounds.</description><subject>Active sites</subject><subject>Acyltransferases - chemistry</subject><subject>Acyltransferases - genetics</subject><subject>Amino Acid Sequence</subject><subject>Amino Acids - chemistry</subject><subject>BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Catalytic Domain</subject><subject>Chlorogenic Acid - chemistry</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Coffea - chemistry</subject><subject>Coffea - genetics</subject><subject>Coffee - chemistry</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Enzyme Activation</subject><subject>Enzymes</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - genetics</subject><subject>Esters - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hematocrit</subject><subject>Isomerism</subject><subject>Molecular Conformation</subject><subject>Molecules</subject><subject>Mutagenesis, Site-Directed</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plants</subject><subject>Protein Biosynthesis</subject><subject>Quinic Acid - analogs &amp; derivatives</subject><subject>Quinic Acid - chemistry</subject><subject>Seeds - chemistry</subject><subject>Seeds - genetics</subject><subject>Sequence Alignment</subject><subject>Substrate Specificity</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpF0D1PwzAQBmALgWgpjIwgL4wp9tlJnLFEFJCKGPhYI8exaao0juxk6L_HJYVO7-nu0Q0vQteUzCkl_L7rQsIcCJCYnqApjRlEEHNxiqaEhJkIkU3QhfcbQghllJ-jCYAAAEqm6GuB33s3qH5wssEP0tceG-twv9b4obZ-14Zpv7Tmd_cqN-Garxvr7Ldua4UXqq48XtqhrXDd4twao_UlOjOy8frqkDP0uXz8yJ-j1dvTS75YRYrHpI-U5KxkBrJECWVElZWpIKATnqapAZNJkVLOM1NWlFUlKY2QrBJCaZbQyijDZiga_ypnvXfaFJ2rt9LtCkqKfT9F14WEYuwn-NvRd0O51dW__iskgLsDkF7JxjjZqtofXcKAZ4wFdzO6je-tO94ZpDzJgP0AfPp3DA</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Lallemand, Laura A.</creator><creator>Zubieta, Chloe</creator><creator>Lee, Soon Goo</creator><creator>Wang, Yechun</creator><creator>Acajjaoui, Samira</creator><creator>Timmins, Joanna</creator><creator>McSweeney, Sean</creator><creator>Jez, Joseph M.</creator><creator>McCarthy, James G.</creator><creator>McCarthy, Andrew A.</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120901</creationdate><title>A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee</title><author>Lallemand, Laura A. ; Zubieta, Chloe ; Lee, Soon Goo ; Wang, Yechun ; Acajjaoui, Samira ; Timmins, Joanna ; McSweeney, Sean ; Jez, Joseph M. ; McCarthy, James G. ; McCarthy, Andrew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-ca43b3f296c8cf8d9b7802e64777f2f9a871449fbd13db0bf8a3d88ce361dfcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active sites</topic><topic>Acyltransferases - chemistry</topic><topic>Acyltransferases - genetics</topic><topic>Amino Acid Sequence</topic><topic>Amino Acids - chemistry</topic><topic>BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Catalytic Domain</topic><topic>Chlorogenic Acid - chemistry</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Coffea - chemistry</topic><topic>Coffea - genetics</topic><topic>Coffee - chemistry</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Enzyme Activation</topic><topic>Enzymes</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - genetics</topic><topic>Esters - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hematocrit</topic><topic>Isomerism</topic><topic>Molecular Conformation</topic><topic>Molecules</topic><topic>Mutagenesis, Site-Directed</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plants</topic><topic>Protein Biosynthesis</topic><topic>Quinic Acid - analogs &amp; derivatives</topic><topic>Quinic Acid - chemistry</topic><topic>Seeds - chemistry</topic><topic>Seeds - genetics</topic><topic>Sequence Alignment</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lallemand, Laura A.</creatorcontrib><creatorcontrib>Zubieta, Chloe</creatorcontrib><creatorcontrib>Lee, Soon Goo</creatorcontrib><creatorcontrib>Wang, Yechun</creatorcontrib><creatorcontrib>Acajjaoui, Samira</creatorcontrib><creatorcontrib>Timmins, Joanna</creatorcontrib><creatorcontrib>McSweeney, Sean</creatorcontrib><creatorcontrib>Jez, Joseph M.</creatorcontrib><creatorcontrib>McCarthy, James G.</creatorcontrib><creatorcontrib>McCarthy, Andrew A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lallemand, Laura A.</au><au>Zubieta, Chloe</au><au>Lee, Soon Goo</au><au>Wang, Yechun</au><au>Acajjaoui, Samira</au><au>Timmins, Joanna</au><au>McSweeney, Sean</au><au>Jez, Joseph M.</au><au>McCarthy, James G.</au><au>McCarthy, Andrew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>160</volume><issue>1</issue><spage>249</spage><epage>260</epage><pages>249-260</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Chlorogenic acids (CGAs) are a group of phenolic secondary metabolites produced by certain plant species and an important component of coffee (Coffea spp.). The CGAs have been implicated in biotic and abiotic stress responses, while the related shikimate esters are key intermediates for lignin biosynthesis. Here, two hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyl transferases (HCT/HQT) from coffee were biochemically characterized. We show, to our knowledge for the first time, that in vitro, HCT is capable of synthesizing the 3,5-O-dicaffeoylquinic acid diester, a major constituent of the immature coffee grain. In order to further understand the substrate specificity and catalytic mechanism of the HCT/HQT, we performed structural and mutagenesis studies of HCT. The three-dimensional structure of a native HCT and a proteolytically stable lysine mutant enabled the identification of important residues involved in substrate specificity and catalysis. Site-directed mutagenesis confirmed the role of residues leucine-400 and phenylalanine-402 in substrate specificity and of histidine-153 and the valine-31 to proline-37 loop in catalysis. In addition, the histidine-154-asparagine mutant was observed to produce 4-fold more dichlorogenic acids compared with the native protein. These data provide, to our knowledge, the first structural characterization of a HCT and, in conjunction with the biochemical and mutagenesis studies presented here, delineate the underlying molecular-level determinants for substrate specificity and catalysis. This work has potential applications in fine-tuning the levels of shikimate and quinate esters (CGAs including dichlorogenic acids) in different plant species in order to generate reduced or elevated levels of the desired target compounds.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>22822210</pmid><doi>10.1104/pp.112.202051</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2012-09, Vol.160 (1), p.249-260
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_crossref_primary_10_1104_pp_112_202051
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects Active sites
Acyltransferases - chemistry
Acyltransferases - genetics
Amino Acid Sequence
Amino Acids - chemistry
BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES
Biochemistry
Biological and medical sciences
Biosynthesis
Catalytic Domain
Chlorogenic Acid - chemistry
Chromatography, High Pressure Liquid
Coffea - chemistry
Coffea - genetics
Coffee - chemistry
Crystal structure
Crystals
Enzyme Activation
Enzymes
Escherichia coli - chemistry
Escherichia coli - genetics
Esters - chemistry
Fundamental and applied biological sciences. Psychology
Hematocrit
Isomerism
Molecular Conformation
Molecules
Mutagenesis, Site-Directed
Plant physiology and development
Plant Proteins - chemistry
Plant Proteins - genetics
Plants
Protein Biosynthesis
Quinic Acid - analogs & derivatives
Quinic Acid - chemistry
Seeds - chemistry
Seeds - genetics
Sequence Alignment
Substrate Specificity
title A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Structural%20Basis%20for%20the%20Biosynthesis%20of%20the%20Major%20Chlorogenic%20Acids%20Found%20in%20Coffee&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Lallemand,%20Laura%20A.&rft.date=2012-09-01&rft.volume=160&rft.issue=1&rft.spage=249&rft.epage=260&rft.pages=249-260&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.112.202051&rft_dat=%3Cjstor_cross%3E23274692%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-ca43b3f296c8cf8d9b7802e64777f2f9a871449fbd13db0bf8a3d88ce361dfcf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/22822210&rft_jstor_id=23274692&rfr_iscdi=true