Loading…
A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee
Chlorogenic acids (CGAs) are a group of phenolic secondary metabolites produced by certain plant species and an important component of coffee (Coffea spp.). The CGAs have been implicated in biotic and abiotic stress responses, while the related shikimate esters are key intermediates for lignin biosy...
Saved in:
Published in: | Plant physiology (Bethesda) 2012-09, Vol.160 (1), p.249-260 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c450t-ca43b3f296c8cf8d9b7802e64777f2f9a871449fbd13db0bf8a3d88ce361dfcf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c450t-ca43b3f296c8cf8d9b7802e64777f2f9a871449fbd13db0bf8a3d88ce361dfcf3 |
container_end_page | 260 |
container_issue | 1 |
container_start_page | 249 |
container_title | Plant physiology (Bethesda) |
container_volume | 160 |
creator | Lallemand, Laura A. Zubieta, Chloe Lee, Soon Goo Wang, Yechun Acajjaoui, Samira Timmins, Joanna McSweeney, Sean Jez, Joseph M. McCarthy, James G. McCarthy, Andrew A. |
description | Chlorogenic acids (CGAs) are a group of phenolic secondary metabolites produced by certain plant species and an important component of coffee (Coffea spp.). The CGAs have been implicated in biotic and abiotic stress responses, while the related shikimate esters are key intermediates for lignin biosynthesis. Here, two hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyl transferases (HCT/HQT) from coffee were biochemically characterized. We show, to our knowledge for the first time, that in vitro, HCT is capable of synthesizing the 3,5-O-dicaffeoylquinic acid diester, a major constituent of the immature coffee grain. In order to further understand the substrate specificity and catalytic mechanism of the HCT/HQT, we performed structural and mutagenesis studies of HCT. The three-dimensional structure of a native HCT and a proteolytically stable lysine mutant enabled the identification of important residues involved in substrate specificity and catalysis. Site-directed mutagenesis confirmed the role of residues leucine-400 and phenylalanine-402 in substrate specificity and of histidine-153 and the valine-31 to proline-37 loop in catalysis. In addition, the histidine-154-asparagine mutant was observed to produce 4-fold more dichlorogenic acids compared with the native protein. These data provide, to our knowledge, the first structural characterization of a HCT and, in conjunction with the biochemical and mutagenesis studies presented here, delineate the underlying molecular-level determinants for substrate specificity and catalysis. This work has potential applications in fine-tuning the levels of shikimate and quinate esters (CGAs including dichlorogenic acids) in different plant species in order to generate reduced or elevated levels of the desired target compounds. |
doi_str_mv | 10.1104/pp.112.202051 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1104_pp_112_202051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23274692</jstor_id><sourcerecordid>23274692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-ca43b3f296c8cf8d9b7802e64777f2f9a871449fbd13db0bf8a3d88ce361dfcf3</originalsourceid><addsrcrecordid>eNpF0D1PwzAQBmALgWgpjIwgL4wp9tlJnLFEFJCKGPhYI8exaao0juxk6L_HJYVO7-nu0Q0vQteUzCkl_L7rQsIcCJCYnqApjRlEEHNxiqaEhJkIkU3QhfcbQghllJ-jCYAAAEqm6GuB33s3qH5wssEP0tceG-twv9b4obZ-14Zpv7Tmd_cqN-Garxvr7Ldua4UXqq48XtqhrXDd4twao_UlOjOy8frqkDP0uXz8yJ-j1dvTS75YRYrHpI-U5KxkBrJECWVElZWpIKATnqapAZNJkVLOM1NWlFUlKY2QrBJCaZbQyijDZiga_ypnvXfaFJ2rt9LtCkqKfT9F14WEYuwn-NvRd0O51dW__iskgLsDkF7JxjjZqtofXcKAZ4wFdzO6je-tO94ZpDzJgP0AfPp3DA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Lallemand, Laura A. ; Zubieta, Chloe ; Lee, Soon Goo ; Wang, Yechun ; Acajjaoui, Samira ; Timmins, Joanna ; McSweeney, Sean ; Jez, Joseph M. ; McCarthy, James G. ; McCarthy, Andrew A.</creator><creatorcontrib>Lallemand, Laura A. ; Zubieta, Chloe ; Lee, Soon Goo ; Wang, Yechun ; Acajjaoui, Samira ; Timmins, Joanna ; McSweeney, Sean ; Jez, Joseph M. ; McCarthy, James G. ; McCarthy, Andrew A.</creatorcontrib><description>Chlorogenic acids (CGAs) are a group of phenolic secondary metabolites produced by certain plant species and an important component of coffee (Coffea spp.). The CGAs have been implicated in biotic and abiotic stress responses, while the related shikimate esters are key intermediates for lignin biosynthesis. Here, two hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyl transferases (HCT/HQT) from coffee were biochemically characterized. We show, to our knowledge for the first time, that in vitro, HCT is capable of synthesizing the 3,5-O-dicaffeoylquinic acid diester, a major constituent of the immature coffee grain. In order to further understand the substrate specificity and catalytic mechanism of the HCT/HQT, we performed structural and mutagenesis studies of HCT. The three-dimensional structure of a native HCT and a proteolytically stable lysine mutant enabled the identification of important residues involved in substrate specificity and catalysis. Site-directed mutagenesis confirmed the role of residues leucine-400 and phenylalanine-402 in substrate specificity and of histidine-153 and the valine-31 to proline-37 loop in catalysis. In addition, the histidine-154-asparagine mutant was observed to produce 4-fold more dichlorogenic acids compared with the native protein. These data provide, to our knowledge, the first structural characterization of a HCT and, in conjunction with the biochemical and mutagenesis studies presented here, delineate the underlying molecular-level determinants for substrate specificity and catalysis. This work has potential applications in fine-tuning the levels of shikimate and quinate esters (CGAs including dichlorogenic acids) in different plant species in order to generate reduced or elevated levels of the desired target compounds.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.112.202051</identifier><identifier>PMID: 22822210</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Active sites ; Acyltransferases - chemistry ; Acyltransferases - genetics ; Amino Acid Sequence ; Amino Acids - chemistry ; BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES ; Biochemistry ; Biological and medical sciences ; Biosynthesis ; Catalytic Domain ; Chlorogenic Acid - chemistry ; Chromatography, High Pressure Liquid ; Coffea - chemistry ; Coffea - genetics ; Coffee - chemistry ; Crystal structure ; Crystals ; Enzyme Activation ; Enzymes ; Escherichia coli - chemistry ; Escherichia coli - genetics ; Esters - chemistry ; Fundamental and applied biological sciences. Psychology ; Hematocrit ; Isomerism ; Molecular Conformation ; Molecules ; Mutagenesis, Site-Directed ; Plant physiology and development ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plants ; Protein Biosynthesis ; Quinic Acid - analogs & derivatives ; Quinic Acid - chemistry ; Seeds - chemistry ; Seeds - genetics ; Sequence Alignment ; Substrate Specificity</subject><ispartof>Plant physiology (Bethesda), 2012-09, Vol.160 (1), p.249-260</ispartof><rights>2012 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-ca43b3f296c8cf8d9b7802e64777f2f9a871449fbd13db0bf8a3d88ce361dfcf3</citedby><cites>FETCH-LOGICAL-c450t-ca43b3f296c8cf8d9b7802e64777f2f9a871449fbd13db0bf8a3d88ce361dfcf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23274692$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23274692$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26324933$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22822210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lallemand, Laura A.</creatorcontrib><creatorcontrib>Zubieta, Chloe</creatorcontrib><creatorcontrib>Lee, Soon Goo</creatorcontrib><creatorcontrib>Wang, Yechun</creatorcontrib><creatorcontrib>Acajjaoui, Samira</creatorcontrib><creatorcontrib>Timmins, Joanna</creatorcontrib><creatorcontrib>McSweeney, Sean</creatorcontrib><creatorcontrib>Jez, Joseph M.</creatorcontrib><creatorcontrib>McCarthy, James G.</creatorcontrib><creatorcontrib>McCarthy, Andrew A.</creatorcontrib><title>A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Chlorogenic acids (CGAs) are a group of phenolic secondary metabolites produced by certain plant species and an important component of coffee (Coffea spp.). The CGAs have been implicated in biotic and abiotic stress responses, while the related shikimate esters are key intermediates for lignin biosynthesis. Here, two hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyl transferases (HCT/HQT) from coffee were biochemically characterized. We show, to our knowledge for the first time, that in vitro, HCT is capable of synthesizing the 3,5-O-dicaffeoylquinic acid diester, a major constituent of the immature coffee grain. In order to further understand the substrate specificity and catalytic mechanism of the HCT/HQT, we performed structural and mutagenesis studies of HCT. The three-dimensional structure of a native HCT and a proteolytically stable lysine mutant enabled the identification of important residues involved in substrate specificity and catalysis. Site-directed mutagenesis confirmed the role of residues leucine-400 and phenylalanine-402 in substrate specificity and of histidine-153 and the valine-31 to proline-37 loop in catalysis. In addition, the histidine-154-asparagine mutant was observed to produce 4-fold more dichlorogenic acids compared with the native protein. These data provide, to our knowledge, the first structural characterization of a HCT and, in conjunction with the biochemical and mutagenesis studies presented here, delineate the underlying molecular-level determinants for substrate specificity and catalysis. This work has potential applications in fine-tuning the levels of shikimate and quinate esters (CGAs including dichlorogenic acids) in different plant species in order to generate reduced or elevated levels of the desired target compounds.</description><subject>Active sites</subject><subject>Acyltransferases - chemistry</subject><subject>Acyltransferases - genetics</subject><subject>Amino Acid Sequence</subject><subject>Amino Acids - chemistry</subject><subject>BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Catalytic Domain</subject><subject>Chlorogenic Acid - chemistry</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Coffea - chemistry</subject><subject>Coffea - genetics</subject><subject>Coffee - chemistry</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Enzyme Activation</subject><subject>Enzymes</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - genetics</subject><subject>Esters - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hematocrit</subject><subject>Isomerism</subject><subject>Molecular Conformation</subject><subject>Molecules</subject><subject>Mutagenesis, Site-Directed</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plants</subject><subject>Protein Biosynthesis</subject><subject>Quinic Acid - analogs & derivatives</subject><subject>Quinic Acid - chemistry</subject><subject>Seeds - chemistry</subject><subject>Seeds - genetics</subject><subject>Sequence Alignment</subject><subject>Substrate Specificity</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpF0D1PwzAQBmALgWgpjIwgL4wp9tlJnLFEFJCKGPhYI8exaao0juxk6L_HJYVO7-nu0Q0vQteUzCkl_L7rQsIcCJCYnqApjRlEEHNxiqaEhJkIkU3QhfcbQghllJ-jCYAAAEqm6GuB33s3qH5wssEP0tceG-twv9b4obZ-14Zpv7Tmd_cqN-Garxvr7Ldua4UXqq48XtqhrXDd4twao_UlOjOy8frqkDP0uXz8yJ-j1dvTS75YRYrHpI-U5KxkBrJECWVElZWpIKATnqapAZNJkVLOM1NWlFUlKY2QrBJCaZbQyijDZiga_ypnvXfaFJ2rt9LtCkqKfT9F14WEYuwn-NvRd0O51dW__iskgLsDkF7JxjjZqtofXcKAZ4wFdzO6je-tO94ZpDzJgP0AfPp3DA</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Lallemand, Laura A.</creator><creator>Zubieta, Chloe</creator><creator>Lee, Soon Goo</creator><creator>Wang, Yechun</creator><creator>Acajjaoui, Samira</creator><creator>Timmins, Joanna</creator><creator>McSweeney, Sean</creator><creator>Jez, Joseph M.</creator><creator>McCarthy, James G.</creator><creator>McCarthy, Andrew A.</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120901</creationdate><title>A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee</title><author>Lallemand, Laura A. ; Zubieta, Chloe ; Lee, Soon Goo ; Wang, Yechun ; Acajjaoui, Samira ; Timmins, Joanna ; McSweeney, Sean ; Jez, Joseph M. ; McCarthy, James G. ; McCarthy, Andrew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-ca43b3f296c8cf8d9b7802e64777f2f9a871449fbd13db0bf8a3d88ce361dfcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active sites</topic><topic>Acyltransferases - chemistry</topic><topic>Acyltransferases - genetics</topic><topic>Amino Acid Sequence</topic><topic>Amino Acids - chemistry</topic><topic>BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Catalytic Domain</topic><topic>Chlorogenic Acid - chemistry</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Coffea - chemistry</topic><topic>Coffea - genetics</topic><topic>Coffee - chemistry</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Enzyme Activation</topic><topic>Enzymes</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - genetics</topic><topic>Esters - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hematocrit</topic><topic>Isomerism</topic><topic>Molecular Conformation</topic><topic>Molecules</topic><topic>Mutagenesis, Site-Directed</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plants</topic><topic>Protein Biosynthesis</topic><topic>Quinic Acid - analogs & derivatives</topic><topic>Quinic Acid - chemistry</topic><topic>Seeds - chemistry</topic><topic>Seeds - genetics</topic><topic>Sequence Alignment</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lallemand, Laura A.</creatorcontrib><creatorcontrib>Zubieta, Chloe</creatorcontrib><creatorcontrib>Lee, Soon Goo</creatorcontrib><creatorcontrib>Wang, Yechun</creatorcontrib><creatorcontrib>Acajjaoui, Samira</creatorcontrib><creatorcontrib>Timmins, Joanna</creatorcontrib><creatorcontrib>McSweeney, Sean</creatorcontrib><creatorcontrib>Jez, Joseph M.</creatorcontrib><creatorcontrib>McCarthy, James G.</creatorcontrib><creatorcontrib>McCarthy, Andrew A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lallemand, Laura A.</au><au>Zubieta, Chloe</au><au>Lee, Soon Goo</au><au>Wang, Yechun</au><au>Acajjaoui, Samira</au><au>Timmins, Joanna</au><au>McSweeney, Sean</au><au>Jez, Joseph M.</au><au>McCarthy, James G.</au><au>McCarthy, Andrew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>160</volume><issue>1</issue><spage>249</spage><epage>260</epage><pages>249-260</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Chlorogenic acids (CGAs) are a group of phenolic secondary metabolites produced by certain plant species and an important component of coffee (Coffea spp.). The CGAs have been implicated in biotic and abiotic stress responses, while the related shikimate esters are key intermediates for lignin biosynthesis. Here, two hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyl transferases (HCT/HQT) from coffee were biochemically characterized. We show, to our knowledge for the first time, that in vitro, HCT is capable of synthesizing the 3,5-O-dicaffeoylquinic acid diester, a major constituent of the immature coffee grain. In order to further understand the substrate specificity and catalytic mechanism of the HCT/HQT, we performed structural and mutagenesis studies of HCT. The three-dimensional structure of a native HCT and a proteolytically stable lysine mutant enabled the identification of important residues involved in substrate specificity and catalysis. Site-directed mutagenesis confirmed the role of residues leucine-400 and phenylalanine-402 in substrate specificity and of histidine-153 and the valine-31 to proline-37 loop in catalysis. In addition, the histidine-154-asparagine mutant was observed to produce 4-fold more dichlorogenic acids compared with the native protein. These data provide, to our knowledge, the first structural characterization of a HCT and, in conjunction with the biochemical and mutagenesis studies presented here, delineate the underlying molecular-level determinants for substrate specificity and catalysis. This work has potential applications in fine-tuning the levels of shikimate and quinate esters (CGAs including dichlorogenic acids) in different plant species in order to generate reduced or elevated levels of the desired target compounds.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>22822210</pmid><doi>10.1104/pp.112.202051</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2012-09, Vol.160 (1), p.249-260 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_crossref_primary_10_1104_pp_112_202051 |
source | JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online |
subjects | Active sites Acyltransferases - chemistry Acyltransferases - genetics Amino Acid Sequence Amino Acids - chemistry BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES Biochemistry Biological and medical sciences Biosynthesis Catalytic Domain Chlorogenic Acid - chemistry Chromatography, High Pressure Liquid Coffea - chemistry Coffea - genetics Coffee - chemistry Crystal structure Crystals Enzyme Activation Enzymes Escherichia coli - chemistry Escherichia coli - genetics Esters - chemistry Fundamental and applied biological sciences. Psychology Hematocrit Isomerism Molecular Conformation Molecules Mutagenesis, Site-Directed Plant physiology and development Plant Proteins - chemistry Plant Proteins - genetics Plants Protein Biosynthesis Quinic Acid - analogs & derivatives Quinic Acid - chemistry Seeds - chemistry Seeds - genetics Sequence Alignment Substrate Specificity |
title | A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Structural%20Basis%20for%20the%20Biosynthesis%20of%20the%20Major%20Chlorogenic%20Acids%20Found%20in%20Coffee&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Lallemand,%20Laura%20A.&rft.date=2012-09-01&rft.volume=160&rft.issue=1&rft.spage=249&rft.epage=260&rft.pages=249-260&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.112.202051&rft_dat=%3Cjstor_cross%3E23274692%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-ca43b3f296c8cf8d9b7802e64777f2f9a871449fbd13db0bf8a3d88ce361dfcf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/22822210&rft_jstor_id=23274692&rfr_iscdi=true |