Loading…

Refilling of Embolized Vessels in Young Stems of Laurel. Do We Need a New Paradigm?1

Recovery of hydraulic conductivity after the induction of embolisms was studied in woody stems of laurel (Laurus nobilis). Previous experiments confirming the recovery of hydraulic conductivity when xylem pressure potential was less than −1 MPa were repeated, and new experiments were done to investi...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 1999-05, Vol.120 (1), p.11-22
Main Authors: Tyree, Melvin Thomas, Salleo, Sebastiano, Nardini, Andrea, Assunta Lo Gullo, Maria, Mosca, Roberto
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recovery of hydraulic conductivity after the induction of embolisms was studied in woody stems of laurel (Laurus nobilis). Previous experiments confirming the recovery of hydraulic conductivity when xylem pressure potential was less than −1 MPa were repeated, and new experiments were done to investigate the changes in solute composition in xylem vessels during refilling. Xylem sap collected by perfusion of excised stem segments showed elevated levels of several ions during refilling. Stem segments were frozen in liquid N2 to view refilling vessels using cryoscanning electron microscopy. Vessels could be found in all three states of presumed refilling: (a) mostly water with a little air, (b) mostly air with a little water, or (c) water droplets extruding from vessel pits adjacent to living cells. Radiographic probe microanalysis of refilling vessels revealed nondetectable levels of dissolved solutes. Results are discussed in terms of proposed mechanisms of refilling in vessels while surrounding vessels were at a xylem pressure potential of less than −1 MPa. We have concluded that none of the existing paradigms explains the results.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.120.1.11