Loading…

Structure of xylanase Xys1Δ from Streptomyces halstedii

Xylanases hydrolyze the β‐1,4‐linked xylose backbone of xylans. They are of increasing interest in the paper and food industries for their pre‐bleaching and bio‐pulping applications. Such industries demand new xylanases to cover a wider range of cleavage specificity, activity and stability. The cata...

Full description

Saved in:
Bibliographic Details
Published in:Acta crystallographica. Section D, Biological crystallography. Biological crystallography., 2003-08, Vol.59 (8), p.1447-1453
Main Authors: Canals, Albert, Vega, M. Cristina, Gomis-Rüth, F. Xavier, Díaz, Margarita, Santamaría, Ramón I., Coll, Miquel
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3300-d61e83ecc9416881f172be79bd67f66002f67806f85ed14a26cb20df55e7f4a63
cites
container_end_page 1453
container_issue 8
container_start_page 1447
container_title Acta crystallographica. Section D, Biological crystallography.
container_volume 59
creator Canals, Albert
Vega, M. Cristina
Gomis-Rüth, F. Xavier
Díaz, Margarita
Santamaría, Ramón I.
Coll, Miquel
description Xylanases hydrolyze the β‐1,4‐linked xylose backbone of xylans. They are of increasing interest in the paper and food industries for their pre‐bleaching and bio‐pulping applications. Such industries demand new xylanases to cover a wider range of cleavage specificity, activity and stability. The catalytic domain of xylanase Xys1 from Streptomyces halstedii JM8 was expressed, purified and crystallized and native data were collected to 1.78 Å resolution with an Rmerge of 4.4%. The crystals belong to space group P212121, with unit‐cell parameters a = 34.05, b = 79.60, c = 87.80 Å. The structure was solved by the molecular‐replacement method using the structure of the homologue Xyl10A from Streptomyces lividans. In a similar manner to other members of its family, Xys1 folds to form a standard (β/α)8 barrel with the two catalytic functions, the acid/base and the nucleophile, at its C‐­terminal side. The overall structure is described and compared with those of related xylanases.
doi_str_mv 10.1107/S0907444903012629
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1107_S0907444903012629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_Z9FX2BX7_G</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3300-d61e83ecc9416881f172be79bd67f66002f67806f85ed14a26cb20df55e7f4a63</originalsourceid><addsrcrecordid>eNqFkEtOwzAQhi0EEqVwAHa5QGD8iB_LUmhAKrBoEYWN5Tq2CLSkslPR3INzcSaMihASC1bzL-YbzfcjdIzhBGMQpxNQIBhjCihgwonaQT1MlcoBmNj9lffRQYzPAEAIFT0kJ21Y23YdXNb4bNMtzKuJLpt1EX-8Zz40yyxtuFXbLDvrYvZkFrF1VV0foj2fsjv6nn10N7qYDi_z8W15NRyMc0spQF5x7CR11iqGuZTYY0HmTqh5xYXnPL3huZDAvSxchZkh3M4JVL4onPDMcNpHeHvXhibG4LxehXppQqcx6C91_Uc9MXLLvNUL1_0P6MHD-fS6SKUkNN-iddLc_KAmvGguqCj0_U2pH9VoRs5mQpf0EziRayg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structure of xylanase Xys1Δ from Streptomyces halstedii</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Alma/SFX Local Collection</source><creator>Canals, Albert ; Vega, M. Cristina ; Gomis-Rüth, F. Xavier ; Díaz, Margarita ; Santamaría, Ramón I. ; Coll, Miquel</creator><creatorcontrib>Canals, Albert ; Vega, M. Cristina ; Gomis-Rüth, F. Xavier ; Díaz, Margarita ; Santamaría, Ramón I. ; Coll, Miquel</creatorcontrib><description>Xylanases hydrolyze the β‐1,4‐linked xylose backbone of xylans. They are of increasing interest in the paper and food industries for their pre‐bleaching and bio‐pulping applications. Such industries demand new xylanases to cover a wider range of cleavage specificity, activity and stability. The catalytic domain of xylanase Xys1 from Streptomyces halstedii JM8 was expressed, purified and crystallized and native data were collected to 1.78 Å resolution with an Rmerge of 4.4%. The crystals belong to space group P212121, with unit‐cell parameters a = 34.05, b = 79.60, c = 87.80 Å. The structure was solved by the molecular‐replacement method using the structure of the homologue Xyl10A from Streptomyces lividans. In a similar manner to other members of its family, Xys1 folds to form a standard (β/α)8 barrel with the two catalytic functions, the acid/base and the nucleophile, at its C‐­terminal side. The overall structure is described and compared with those of related xylanases.</description><identifier>ISSN: 1399-0047</identifier><identifier>ISSN: 0907-4449</identifier><identifier>EISSN: 1399-0047</identifier><identifier>DOI: 10.1107/S0907444903012629</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: Munksgaard International Publishers</publisher><subject>glycoside hydrolase family 10 ; TIM-barrel fold ; xylan degradation ; xylanases</subject><ispartof>Acta crystallographica. Section D, Biological crystallography., 2003-08, Vol.59 (8), p.1447-1453</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3300-d61e83ecc9416881f172be79bd67f66002f67806f85ed14a26cb20df55e7f4a63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Canals, Albert</creatorcontrib><creatorcontrib>Vega, M. Cristina</creatorcontrib><creatorcontrib>Gomis-Rüth, F. Xavier</creatorcontrib><creatorcontrib>Díaz, Margarita</creatorcontrib><creatorcontrib>Santamaría, Ramón I.</creatorcontrib><creatorcontrib>Coll, Miquel</creatorcontrib><title>Structure of xylanase Xys1Δ from Streptomyces halstedii</title><title>Acta crystallographica. Section D, Biological crystallography.</title><addtitle>Acta Cryst. D</addtitle><description>Xylanases hydrolyze the β‐1,4‐linked xylose backbone of xylans. They are of increasing interest in the paper and food industries for their pre‐bleaching and bio‐pulping applications. Such industries demand new xylanases to cover a wider range of cleavage specificity, activity and stability. The catalytic domain of xylanase Xys1 from Streptomyces halstedii JM8 was expressed, purified and crystallized and native data were collected to 1.78 Å resolution with an Rmerge of 4.4%. The crystals belong to space group P212121, with unit‐cell parameters a = 34.05, b = 79.60, c = 87.80 Å. The structure was solved by the molecular‐replacement method using the structure of the homologue Xyl10A from Streptomyces lividans. In a similar manner to other members of its family, Xys1 folds to form a standard (β/α)8 barrel with the two catalytic functions, the acid/base and the nucleophile, at its C‐­terminal side. The overall structure is described and compared with those of related xylanases.</description><subject>glycoside hydrolase family 10</subject><subject>TIM-barrel fold</subject><subject>xylan degradation</subject><subject>xylanases</subject><issn>1399-0047</issn><issn>0907-4449</issn><issn>1399-0047</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAQhi0EEqVwAHa5QGD8iB_LUmhAKrBoEYWN5Tq2CLSkslPR3INzcSaMihASC1bzL-YbzfcjdIzhBGMQpxNQIBhjCihgwonaQT1MlcoBmNj9lffRQYzPAEAIFT0kJ21Y23YdXNb4bNMtzKuJLpt1EX-8Zz40yyxtuFXbLDvrYvZkFrF1VV0foj2fsjv6nn10N7qYDi_z8W15NRyMc0spQF5x7CR11iqGuZTYY0HmTqh5xYXnPL3huZDAvSxchZkh3M4JVL4onPDMcNpHeHvXhibG4LxehXppQqcx6C91_Uc9MXLLvNUL1_0P6MHD-fS6SKUkNN-iddLc_KAmvGguqCj0_U2pH9VoRs5mQpf0EziRayg</recordid><startdate>200308</startdate><enddate>200308</enddate><creator>Canals, Albert</creator><creator>Vega, M. Cristina</creator><creator>Gomis-Rüth, F. Xavier</creator><creator>Díaz, Margarita</creator><creator>Santamaría, Ramón I.</creator><creator>Coll, Miquel</creator><general>Munksgaard International Publishers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200308</creationdate><title>Structure of xylanase Xys1Δ from Streptomyces halstedii</title><author>Canals, Albert ; Vega, M. Cristina ; Gomis-Rüth, F. Xavier ; Díaz, Margarita ; Santamaría, Ramón I. ; Coll, Miquel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3300-d61e83ecc9416881f172be79bd67f66002f67806f85ed14a26cb20df55e7f4a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>glycoside hydrolase family 10</topic><topic>TIM-barrel fold</topic><topic>xylan degradation</topic><topic>xylanases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Canals, Albert</creatorcontrib><creatorcontrib>Vega, M. Cristina</creatorcontrib><creatorcontrib>Gomis-Rüth, F. Xavier</creatorcontrib><creatorcontrib>Díaz, Margarita</creatorcontrib><creatorcontrib>Santamaría, Ramón I.</creatorcontrib><creatorcontrib>Coll, Miquel</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Canals, Albert</au><au>Vega, M. Cristina</au><au>Gomis-Rüth, F. Xavier</au><au>Díaz, Margarita</au><au>Santamaría, Ramón I.</au><au>Coll, Miquel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of xylanase Xys1Δ from Streptomyces halstedii</atitle><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle><addtitle>Acta Cryst. D</addtitle><date>2003-08</date><risdate>2003</risdate><volume>59</volume><issue>8</issue><spage>1447</spage><epage>1453</epage><pages>1447-1453</pages><issn>1399-0047</issn><issn>0907-4449</issn><eissn>1399-0047</eissn><abstract>Xylanases hydrolyze the β‐1,4‐linked xylose backbone of xylans. They are of increasing interest in the paper and food industries for their pre‐bleaching and bio‐pulping applications. Such industries demand new xylanases to cover a wider range of cleavage specificity, activity and stability. The catalytic domain of xylanase Xys1 from Streptomyces halstedii JM8 was expressed, purified and crystallized and native data were collected to 1.78 Å resolution with an Rmerge of 4.4%. The crystals belong to space group P212121, with unit‐cell parameters a = 34.05, b = 79.60, c = 87.80 Å. The structure was solved by the molecular‐replacement method using the structure of the homologue Xyl10A from Streptomyces lividans. In a similar manner to other members of its family, Xys1 folds to form a standard (β/α)8 barrel with the two catalytic functions, the acid/base and the nucleophile, at its C‐­terminal side. The overall structure is described and compared with those of related xylanases.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>Munksgaard International Publishers</pub><doi>10.1107/S0907444903012629</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1399-0047
ispartof Acta crystallographica. Section D, Biological crystallography., 2003-08, Vol.59 (8), p.1447-1453
issn 1399-0047
0907-4449
1399-0047
language eng
recordid cdi_crossref_primary_10_1107_S0907444903012629
source Wiley-Blackwell Read & Publish Collection; Alma/SFX Local Collection
subjects glycoside hydrolase family 10
TIM-barrel fold
xylan degradation
xylanases
title Structure of xylanase Xys1Δ from Streptomyces halstedii
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20xylanase%20Xys1%CE%94%20from%20Streptomyces%20halstedii&rft.jtitle=Acta%20crystallographica.%20Section%20D,%20Biological%20crystallography.&rft.au=Canals,%20Albert&rft.date=2003-08&rft.volume=59&rft.issue=8&rft.spage=1447&rft.epage=1453&rft.pages=1447-1453&rft.issn=1399-0047&rft.eissn=1399-0047&rft_id=info:doi/10.1107/S0907444903012629&rft_dat=%3Cistex_cross%3Eark_67375_WNG_Z9FX2BX7_G%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3300-d61e83ecc9416881f172be79bd67f66002f67806f85ed14a26cb20df55e7f4a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true