Loading…

A comparison between zero and first order approximation algorithms for layered manufacturing

Current rapid prototyping processes are mainly based on layered manufacturing techniques using 2.5D slices. Defines manufacturing by means of 2.5D slices as a zero order approximation. A disadvantage of this approximation is the staircase effect, requiring thin layers to be used. If the outer surfac...

Full description

Saved in:
Bibliographic Details
Published in:Rapid prototyping journal 1997-12, Vol.3 (4), p.144-149
Main Authors: de Jager, P.J., Broek, J.J., Vergeest, J.S.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current rapid prototyping processes are mainly based on layered manufacturing techniques using 2.5D slices. Defines manufacturing by means of 2.5D slices as a zero order approximation. A disadvantage of this approximation is the staircase effect, requiring thin layers to be used. If the outer surfaces of the slices can be inclined, speaks of a first order approximation. This approximation is achieved by linear interpolation between adjacent contours, resulting in ruled slices. Describes a method to approximate a given model geometry in a layered fashion not exceeding a user-defined error using either a zero or a first order approximation and an adaptive layer thickness. Analyses the model geometry for curvature and inclination in order to determine the adaptive layer thickness. Provides a method for matching corresponding contours from adjacent slices. Several test objects have been processed using both zero and first order approximation. Shows that the first order approximation significantly reduces the number of required layers for a given when compared to the zero order approximation.
ISSN:1355-2546
1758-7670
DOI:10.1108/13552549710191854