Loading…
A posteriori residual error estimators with mixed boundary conditions for quasi-static electromagnetic problems
Purpose – The purpose of this paper is to propose some a posteriori residual error estimators (REEs)to evaluate the accuracy of the finite element method for quasi-static electromagnetic problems with mixed boundary conditions. Both classical magnetodynamic A-ϕ and T-Ω formulations in harmonic case...
Saved in:
Published in: | Compel 2015-01, Vol.34 (3), p.724-739 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c415t-f7b32960148688287511e8a4415705cb52bcb606c65df56147f4111f50e54cdb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-f7b32960148688287511e8a4415705cb52bcb606c65df56147f4111f50e54cdb3 |
container_end_page | 739 |
container_issue | 3 |
container_start_page | 724 |
container_title | Compel |
container_volume | 34 |
creator | Tang, Zuqi Le-menach, Yvonnick Creusé, E Nicaise, S Piriou, F Némitz, N |
description | Purpose
– The purpose of this paper is to propose some a posteriori residual error estimators (REEs)to evaluate the accuracy of the finite element method for quasi-static electromagnetic problems with mixed boundary conditions. Both classical magnetodynamic A-ϕ and T-Ω formulations in harmonic case are analysed. As an example of application the estimated error maps of an electromagnetic system are studied. At last, a remeshing process is done according to the estimated error maps.
Design/methodology/approach
– The paper proposes to analyze the efficiency of numerical REEs in the case of magnetodynamic harmonic formulations. The deal is to determine the areas where it is necessary to improve the mesh. Moreover the error estimators are applied for structures with mixed boundary conditions.
Findings
– The studied application shows the possibilities of the residual error estimators in the case of electromagnetic structures. The comparison of the remeshed show the improvement of the obtained solution when the authors compare with a reference one.
Research limitations/implications
– The paper provides some interesting results in the case of magnetodynamic harmonic formulations in terms of potentials. Both classical formulations are studied.
Practical implications
– The paper provides some informations to develop the proposed formulations in the software using finite element method.
Social implications
– The paper deals with the possibility to improve the determination of the meshes in the analysis of electromagnetic structure with the finite element method. The proposed method can be a good solution to obtain an optimal mesh for a given numerical error.
Originality/value
– The paper proposes some elements of solution for the numerical analysis of electromagnetic structures. More particularly the results can be used to determine the good meshes of the finite element method. |
doi_str_mv | 10.1108/COMPEL-10-2014-0256 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1108_COMPEL_10_2014_0256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3676514071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-f7b32960148688287511e8a4415705cb52bcb606c65df56147f4111f50e54cdb3</originalsourceid><addsrcrecordid>eNp9kk9v1DAQxS1EJZaWT8DFEhc4GGb8L8lxtWop0qJyaM-W4zjUVRJv7QTot8dREBJI4Is1498bzdMzIa8R3iNC_eFw8_nL5ZEhMA4oGXCln5EdByWZ0qCfkx0IwRlq2bwgL3N-gHIaBTsS9_QU8-xTiCnQ5HPoFjtQn1JM1Oc5jHaOKdPvYb6nY_jhO9rGZepseqIuTl2YQ5wy7Qv9uNgcWJ7tHBz1g3dziqP9Ovm1PqXYDn7MF-Sst0P2r37d5-Tu6vL2cM2ONx8_HfZH5iSqmfVVK3iji5la1zWvK4XoayvLYwXKtYq3ri3OnFZdrzTKqpeI2CvwSrquFefk3Tb33g7mlIqN9GSiDeZ6fzRrD5BLoUX1DQv7dmPLko9LMW3GkJ0fBjv5uGSDFTRVGd-s6Ju_0Ie4pKk4MRxqWQuh1X8p1FUDCFLqQomNcinmnHz_e08Es8ZqtljXco3VrLEWFd9UfvTJDt0_RH_8BfETwg2jtw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1679010446</pqid></control><display><type>article</type><title>A posteriori residual error estimators with mixed boundary conditions for quasi-static electromagnetic problems</title><source>ABI/INFORM global</source><source>Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)</source><creator>Tang, Zuqi ; Le-menach, Yvonnick ; Creusé, E ; Nicaise, S ; Piriou, F ; Némitz, N</creator><contributor>Demenko, Ivo Doležel, Kay Hameyer, Andrzej ; Andrzej Demenko, Ivo Dolezel, Kay Hameyer, Wojciech Pietrowski and Krzysztof Zawirski</contributor><creatorcontrib>Tang, Zuqi ; Le-menach, Yvonnick ; Creusé, E ; Nicaise, S ; Piriou, F ; Némitz, N ; Demenko, Ivo Doležel, Kay Hameyer, Andrzej ; Andrzej Demenko, Ivo Dolezel, Kay Hameyer, Wojciech Pietrowski and Krzysztof Zawirski</creatorcontrib><description>Purpose
– The purpose of this paper is to propose some a posteriori residual error estimators (REEs)to evaluate the accuracy of the finite element method for quasi-static electromagnetic problems with mixed boundary conditions. Both classical magnetodynamic A-ϕ and T-Ω formulations in harmonic case are analysed. As an example of application the estimated error maps of an electromagnetic system are studied. At last, a remeshing process is done according to the estimated error maps.
Design/methodology/approach
– The paper proposes to analyze the efficiency of numerical REEs in the case of magnetodynamic harmonic formulations. The deal is to determine the areas where it is necessary to improve the mesh. Moreover the error estimators are applied for structures with mixed boundary conditions.
Findings
– The studied application shows the possibilities of the residual error estimators in the case of electromagnetic structures. The comparison of the remeshed show the improvement of the obtained solution when the authors compare with a reference one.
Research limitations/implications
– The paper provides some interesting results in the case of magnetodynamic harmonic formulations in terms of potentials. Both classical formulations are studied.
Practical implications
– The paper provides some informations to develop the proposed formulations in the software using finite element method.
Social implications
– The paper deals with the possibility to improve the determination of the meshes in the analysis of electromagnetic structure with the finite element method. The proposed method can be a good solution to obtain an optimal mesh for a given numerical error.
Originality/value
– The paper proposes some elements of solution for the numerical analysis of electromagnetic structures. More particularly the results can be used to determine the good meshes of the finite element method.</description><identifier>ISSN: 0332-1649</identifier><identifier>EISSN: 2054-5606</identifier><identifier>DOI: 10.1108/COMPEL-10-2014-0256</identifier><identifier>CODEN: CODUDU</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Boundary conditions ; Efficiency ; Electrical & electronic engineering ; Engineering ; Error analysis ; Errors ; Estimators ; Finite element analysis ; Finite element method ; Formulations ; Harmonics ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical Analysis</subject><ispartof>Compel, 2015-01, Vol.34 (3), p.724-739</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Emerald Group Publishing Limited 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-f7b32960148688287511e8a4415705cb52bcb606c65df56147f4111f50e54cdb3</citedby><cites>FETCH-LOGICAL-c415t-f7b32960148688287511e8a4415705cb52bcb606c65df56147f4111f50e54cdb3</cites><orcidid>0000-0002-5402-5858 ; 0000-0001-8032-3886 ; 0000-0003-3673-3495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1679010446/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1679010446?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01243637$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Demenko, Ivo Doležel, Kay Hameyer, Andrzej</contributor><contributor>Andrzej Demenko, Ivo Dolezel, Kay Hameyer, Wojciech Pietrowski and Krzysztof Zawirski</contributor><creatorcontrib>Tang, Zuqi</creatorcontrib><creatorcontrib>Le-menach, Yvonnick</creatorcontrib><creatorcontrib>Creusé, E</creatorcontrib><creatorcontrib>Nicaise, S</creatorcontrib><creatorcontrib>Piriou, F</creatorcontrib><creatorcontrib>Némitz, N</creatorcontrib><title>A posteriori residual error estimators with mixed boundary conditions for quasi-static electromagnetic problems</title><title>Compel</title><description>Purpose
– The purpose of this paper is to propose some a posteriori residual error estimators (REEs)to evaluate the accuracy of the finite element method for quasi-static electromagnetic problems with mixed boundary conditions. Both classical magnetodynamic A-ϕ and T-Ω formulations in harmonic case are analysed. As an example of application the estimated error maps of an electromagnetic system are studied. At last, a remeshing process is done according to the estimated error maps.
Design/methodology/approach
– The paper proposes to analyze the efficiency of numerical REEs in the case of magnetodynamic harmonic formulations. The deal is to determine the areas where it is necessary to improve the mesh. Moreover the error estimators are applied for structures with mixed boundary conditions.
Findings
– The studied application shows the possibilities of the residual error estimators in the case of electromagnetic structures. The comparison of the remeshed show the improvement of the obtained solution when the authors compare with a reference one.
Research limitations/implications
– The paper provides some interesting results in the case of magnetodynamic harmonic formulations in terms of potentials. Both classical formulations are studied.
Practical implications
– The paper provides some informations to develop the proposed formulations in the software using finite element method.
Social implications
– The paper deals with the possibility to improve the determination of the meshes in the analysis of electromagnetic structure with the finite element method. The proposed method can be a good solution to obtain an optimal mesh for a given numerical error.
Originality/value
– The paper proposes some elements of solution for the numerical analysis of electromagnetic structures. More particularly the results can be used to determine the good meshes of the finite element method.</description><subject>Boundary conditions</subject><subject>Efficiency</subject><subject>Electrical & electronic engineering</subject><subject>Engineering</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Estimators</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Formulations</subject><subject>Harmonics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical Analysis</subject><issn>0332-1649</issn><issn>2054-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kk9v1DAQxS1EJZaWT8DFEhc4GGb8L8lxtWop0qJyaM-W4zjUVRJv7QTot8dREBJI4Is1498bzdMzIa8R3iNC_eFw8_nL5ZEhMA4oGXCln5EdByWZ0qCfkx0IwRlq2bwgL3N-gHIaBTsS9_QU8-xTiCnQ5HPoFjtQn1JM1Oc5jHaOKdPvYb6nY_jhO9rGZepseqIuTl2YQ5wy7Qv9uNgcWJ7tHBz1g3dziqP9Ovm1PqXYDn7MF-Sst0P2r37d5-Tu6vL2cM2ONx8_HfZH5iSqmfVVK3iji5la1zWvK4XoayvLYwXKtYq3ri3OnFZdrzTKqpeI2CvwSrquFefk3Tb33g7mlIqN9GSiDeZ6fzRrD5BLoUX1DQv7dmPLko9LMW3GkJ0fBjv5uGSDFTRVGd-s6Ju_0Ie4pKk4MRxqWQuh1X8p1FUDCFLqQomNcinmnHz_e08Es8ZqtljXco3VrLEWFd9UfvTJDt0_RH_8BfETwg2jtw</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Tang, Zuqi</creator><creator>Le-menach, Yvonnick</creator><creator>Creusé, E</creator><creator>Nicaise, S</creator><creator>Piriou, F</creator><creator>Némitz, N</creator><general>Emerald Group Publishing Limited</general><general>Emerald</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5402-5858</orcidid><orcidid>https://orcid.org/0000-0001-8032-3886</orcidid><orcidid>https://orcid.org/0000-0003-3673-3495</orcidid></search><sort><creationdate>20150101</creationdate><title>A posteriori residual error estimators with mixed boundary conditions for quasi-static electromagnetic problems</title><author>Tang, Zuqi ; Le-menach, Yvonnick ; Creusé, E ; Nicaise, S ; Piriou, F ; Némitz, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-f7b32960148688287511e8a4415705cb52bcb606c65df56147f4111f50e54cdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundary conditions</topic><topic>Efficiency</topic><topic>Electrical & electronic engineering</topic><topic>Engineering</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Estimators</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Formulations</topic><topic>Harmonics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Zuqi</creatorcontrib><creatorcontrib>Le-menach, Yvonnick</creatorcontrib><creatorcontrib>Creusé, E</creatorcontrib><creatorcontrib>Nicaise, S</creatorcontrib><creatorcontrib>Piriou, F</creatorcontrib><creatorcontrib>Némitz, N</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Compel</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Zuqi</au><au>Le-menach, Yvonnick</au><au>Creusé, E</au><au>Nicaise, S</au><au>Piriou, F</au><au>Némitz, N</au><au>Demenko, Ivo Doležel, Kay Hameyer, Andrzej</au><au>Andrzej Demenko, Ivo Dolezel, Kay Hameyer, Wojciech Pietrowski and Krzysztof Zawirski</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A posteriori residual error estimators with mixed boundary conditions for quasi-static electromagnetic problems</atitle><jtitle>Compel</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>34</volume><issue>3</issue><spage>724</spage><epage>739</epage><pages>724-739</pages><issn>0332-1649</issn><eissn>2054-5606</eissn><coden>CODUDU</coden><abstract>Purpose
– The purpose of this paper is to propose some a posteriori residual error estimators (REEs)to evaluate the accuracy of the finite element method for quasi-static electromagnetic problems with mixed boundary conditions. Both classical magnetodynamic A-ϕ and T-Ω formulations in harmonic case are analysed. As an example of application the estimated error maps of an electromagnetic system are studied. At last, a remeshing process is done according to the estimated error maps.
Design/methodology/approach
– The paper proposes to analyze the efficiency of numerical REEs in the case of magnetodynamic harmonic formulations. The deal is to determine the areas where it is necessary to improve the mesh. Moreover the error estimators are applied for structures with mixed boundary conditions.
Findings
– The studied application shows the possibilities of the residual error estimators in the case of electromagnetic structures. The comparison of the remeshed show the improvement of the obtained solution when the authors compare with a reference one.
Research limitations/implications
– The paper provides some interesting results in the case of magnetodynamic harmonic formulations in terms of potentials. Both classical formulations are studied.
Practical implications
– The paper provides some informations to develop the proposed formulations in the software using finite element method.
Social implications
– The paper deals with the possibility to improve the determination of the meshes in the analysis of electromagnetic structure with the finite element method. The proposed method can be a good solution to obtain an optimal mesh for a given numerical error.
Originality/value
– The paper proposes some elements of solution for the numerical analysis of electromagnetic structures. More particularly the results can be used to determine the good meshes of the finite element method.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/COMPEL-10-2014-0256</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5402-5858</orcidid><orcidid>https://orcid.org/0000-0001-8032-3886</orcidid><orcidid>https://orcid.org/0000-0003-3673-3495</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0332-1649 |
ispartof | Compel, 2015-01, Vol.34 (3), p.724-739 |
issn | 0332-1649 2054-5606 |
language | eng |
recordid | cdi_crossref_primary_10_1108_COMPEL_10_2014_0256 |
source | ABI/INFORM global; Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list) |
subjects | Boundary conditions Efficiency Electrical & electronic engineering Engineering Error analysis Errors Estimators Finite element analysis Finite element method Formulations Harmonics Mathematical analysis Mathematical models Mathematics Numerical Analysis |
title | A posteriori residual error estimators with mixed boundary conditions for quasi-static electromagnetic problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20posteriori%20residual%20error%20estimators%20with%20mixed%20boundary%20conditions%20for%20quasi-static%20electromagnetic%20problems&rft.jtitle=Compel&rft.au=Tang,%20Zuqi&rft.date=2015-01-01&rft.volume=34&rft.issue=3&rft.spage=724&rft.epage=739&rft.pages=724-739&rft.issn=0332-1649&rft.eissn=2054-5606&rft.coden=CODUDU&rft_id=info:doi/10.1108/COMPEL-10-2014-0256&rft_dat=%3Cproquest_cross%3E3676514071%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-f7b32960148688287511e8a4415705cb52bcb606c65df56147f4111f50e54cdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1679010446&rft_id=info:pmid/&rfr_iscdi=true |