Loading…

A posteriori residual error estimators with mixed boundary conditions for quasi-static electromagnetic problems

Purpose – The purpose of this paper is to propose some a posteriori residual error estimators (REEs)to evaluate the accuracy of the finite element method for quasi-static electromagnetic problems with mixed boundary conditions. Both classical magnetodynamic A-ϕ and T-Ω formulations in harmonic case...

Full description

Saved in:
Bibliographic Details
Published in:Compel 2015-01, Vol.34 (3), p.724-739
Main Authors: Tang, Zuqi, Le-menach, Yvonnick, Creusé, E, Nicaise, S, Piriou, F, Némitz, N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-f7b32960148688287511e8a4415705cb52bcb606c65df56147f4111f50e54cdb3
cites cdi_FETCH-LOGICAL-c415t-f7b32960148688287511e8a4415705cb52bcb606c65df56147f4111f50e54cdb3
container_end_page 739
container_issue 3
container_start_page 724
container_title Compel
container_volume 34
creator Tang, Zuqi
Le-menach, Yvonnick
Creusé, E
Nicaise, S
Piriou, F
Némitz, N
description Purpose – The purpose of this paper is to propose some a posteriori residual error estimators (REEs)to evaluate the accuracy of the finite element method for quasi-static electromagnetic problems with mixed boundary conditions. Both classical magnetodynamic A-ϕ and T-Ω formulations in harmonic case are analysed. As an example of application the estimated error maps of an electromagnetic system are studied. At last, a remeshing process is done according to the estimated error maps. Design/methodology/approach – The paper proposes to analyze the efficiency of numerical REEs in the case of magnetodynamic harmonic formulations. The deal is to determine the areas where it is necessary to improve the mesh. Moreover the error estimators are applied for structures with mixed boundary conditions. Findings – The studied application shows the possibilities of the residual error estimators in the case of electromagnetic structures. The comparison of the remeshed show the improvement of the obtained solution when the authors compare with a reference one. Research limitations/implications – The paper provides some interesting results in the case of magnetodynamic harmonic formulations in terms of potentials. Both classical formulations are studied. Practical implications – The paper provides some informations to develop the proposed formulations in the software using finite element method. Social implications – The paper deals with the possibility to improve the determination of the meshes in the analysis of electromagnetic structure with the finite element method. The proposed method can be a good solution to obtain an optimal mesh for a given numerical error. Originality/value – The paper proposes some elements of solution for the numerical analysis of electromagnetic structures. More particularly the results can be used to determine the good meshes of the finite element method.
doi_str_mv 10.1108/COMPEL-10-2014-0256
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1108_COMPEL_10_2014_0256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3676514071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-f7b32960148688287511e8a4415705cb52bcb606c65df56147f4111f50e54cdb3</originalsourceid><addsrcrecordid>eNp9kk9v1DAQxS1EJZaWT8DFEhc4GGb8L8lxtWop0qJyaM-W4zjUVRJv7QTot8dREBJI4Is1498bzdMzIa8R3iNC_eFw8_nL5ZEhMA4oGXCln5EdByWZ0qCfkx0IwRlq2bwgL3N-gHIaBTsS9_QU8-xTiCnQ5HPoFjtQn1JM1Oc5jHaOKdPvYb6nY_jhO9rGZepseqIuTl2YQ5wy7Qv9uNgcWJ7tHBz1g3dziqP9Ovm1PqXYDn7MF-Sst0P2r37d5-Tu6vL2cM2ONx8_HfZH5iSqmfVVK3iji5la1zWvK4XoayvLYwXKtYq3ri3OnFZdrzTKqpeI2CvwSrquFefk3Tb33g7mlIqN9GSiDeZ6fzRrD5BLoUX1DQv7dmPLko9LMW3GkJ0fBjv5uGSDFTRVGd-s6Ju_0Ie4pKk4MRxqWQuh1X8p1FUDCFLqQomNcinmnHz_e08Es8ZqtljXco3VrLEWFd9UfvTJDt0_RH_8BfETwg2jtw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1679010446</pqid></control><display><type>article</type><title>A posteriori residual error estimators with mixed boundary conditions for quasi-static electromagnetic problems</title><source>ABI/INFORM global</source><source>Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)</source><creator>Tang, Zuqi ; Le-menach, Yvonnick ; Creusé, E ; Nicaise, S ; Piriou, F ; Némitz, N</creator><contributor>Demenko, Ivo Doležel, Kay Hameyer, Andrzej ; Andrzej Demenko, Ivo Dolezel, Kay Hameyer, Wojciech Pietrowski and Krzysztof Zawirski</contributor><creatorcontrib>Tang, Zuqi ; Le-menach, Yvonnick ; Creusé, E ; Nicaise, S ; Piriou, F ; Némitz, N ; Demenko, Ivo Doležel, Kay Hameyer, Andrzej ; Andrzej Demenko, Ivo Dolezel, Kay Hameyer, Wojciech Pietrowski and Krzysztof Zawirski</creatorcontrib><description>Purpose – The purpose of this paper is to propose some a posteriori residual error estimators (REEs)to evaluate the accuracy of the finite element method for quasi-static electromagnetic problems with mixed boundary conditions. Both classical magnetodynamic A-ϕ and T-Ω formulations in harmonic case are analysed. As an example of application the estimated error maps of an electromagnetic system are studied. At last, a remeshing process is done according to the estimated error maps. Design/methodology/approach – The paper proposes to analyze the efficiency of numerical REEs in the case of magnetodynamic harmonic formulations. The deal is to determine the areas where it is necessary to improve the mesh. Moreover the error estimators are applied for structures with mixed boundary conditions. Findings – The studied application shows the possibilities of the residual error estimators in the case of electromagnetic structures. The comparison of the remeshed show the improvement of the obtained solution when the authors compare with a reference one. Research limitations/implications – The paper provides some interesting results in the case of magnetodynamic harmonic formulations in terms of potentials. Both classical formulations are studied. Practical implications – The paper provides some informations to develop the proposed formulations in the software using finite element method. Social implications – The paper deals with the possibility to improve the determination of the meshes in the analysis of electromagnetic structure with the finite element method. The proposed method can be a good solution to obtain an optimal mesh for a given numerical error. Originality/value – The paper proposes some elements of solution for the numerical analysis of electromagnetic structures. More particularly the results can be used to determine the good meshes of the finite element method.</description><identifier>ISSN: 0332-1649</identifier><identifier>EISSN: 2054-5606</identifier><identifier>DOI: 10.1108/COMPEL-10-2014-0256</identifier><identifier>CODEN: CODUDU</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Boundary conditions ; Efficiency ; Electrical &amp; electronic engineering ; Engineering ; Error analysis ; Errors ; Estimators ; Finite element analysis ; Finite element method ; Formulations ; Harmonics ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical Analysis</subject><ispartof>Compel, 2015-01, Vol.34 (3), p.724-739</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Emerald Group Publishing Limited 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-f7b32960148688287511e8a4415705cb52bcb606c65df56147f4111f50e54cdb3</citedby><cites>FETCH-LOGICAL-c415t-f7b32960148688287511e8a4415705cb52bcb606c65df56147f4111f50e54cdb3</cites><orcidid>0000-0002-5402-5858 ; 0000-0001-8032-3886 ; 0000-0003-3673-3495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1679010446/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1679010446?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01243637$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Demenko, Ivo Doležel, Kay Hameyer, Andrzej</contributor><contributor>Andrzej Demenko, Ivo Dolezel, Kay Hameyer, Wojciech Pietrowski and Krzysztof Zawirski</contributor><creatorcontrib>Tang, Zuqi</creatorcontrib><creatorcontrib>Le-menach, Yvonnick</creatorcontrib><creatorcontrib>Creusé, E</creatorcontrib><creatorcontrib>Nicaise, S</creatorcontrib><creatorcontrib>Piriou, F</creatorcontrib><creatorcontrib>Némitz, N</creatorcontrib><title>A posteriori residual error estimators with mixed boundary conditions for quasi-static electromagnetic problems</title><title>Compel</title><description>Purpose – The purpose of this paper is to propose some a posteriori residual error estimators (REEs)to evaluate the accuracy of the finite element method for quasi-static electromagnetic problems with mixed boundary conditions. Both classical magnetodynamic A-ϕ and T-Ω formulations in harmonic case are analysed. As an example of application the estimated error maps of an electromagnetic system are studied. At last, a remeshing process is done according to the estimated error maps. Design/methodology/approach – The paper proposes to analyze the efficiency of numerical REEs in the case of magnetodynamic harmonic formulations. The deal is to determine the areas where it is necessary to improve the mesh. Moreover the error estimators are applied for structures with mixed boundary conditions. Findings – The studied application shows the possibilities of the residual error estimators in the case of electromagnetic structures. The comparison of the remeshed show the improvement of the obtained solution when the authors compare with a reference one. Research limitations/implications – The paper provides some interesting results in the case of magnetodynamic harmonic formulations in terms of potentials. Both classical formulations are studied. Practical implications – The paper provides some informations to develop the proposed formulations in the software using finite element method. Social implications – The paper deals with the possibility to improve the determination of the meshes in the analysis of electromagnetic structure with the finite element method. The proposed method can be a good solution to obtain an optimal mesh for a given numerical error. Originality/value – The paper proposes some elements of solution for the numerical analysis of electromagnetic structures. More particularly the results can be used to determine the good meshes of the finite element method.</description><subject>Boundary conditions</subject><subject>Efficiency</subject><subject>Electrical &amp; electronic engineering</subject><subject>Engineering</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Estimators</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Formulations</subject><subject>Harmonics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical Analysis</subject><issn>0332-1649</issn><issn>2054-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kk9v1DAQxS1EJZaWT8DFEhc4GGb8L8lxtWop0qJyaM-W4zjUVRJv7QTot8dREBJI4Is1498bzdMzIa8R3iNC_eFw8_nL5ZEhMA4oGXCln5EdByWZ0qCfkx0IwRlq2bwgL3N-gHIaBTsS9_QU8-xTiCnQ5HPoFjtQn1JM1Oc5jHaOKdPvYb6nY_jhO9rGZepseqIuTl2YQ5wy7Qv9uNgcWJ7tHBz1g3dziqP9Ovm1PqXYDn7MF-Sst0P2r37d5-Tu6vL2cM2ONx8_HfZH5iSqmfVVK3iji5la1zWvK4XoayvLYwXKtYq3ri3OnFZdrzTKqpeI2CvwSrquFefk3Tb33g7mlIqN9GSiDeZ6fzRrD5BLoUX1DQv7dmPLko9LMW3GkJ0fBjv5uGSDFTRVGd-s6Ju_0Ie4pKk4MRxqWQuh1X8p1FUDCFLqQomNcinmnHz_e08Es8ZqtljXco3VrLEWFd9UfvTJDt0_RH_8BfETwg2jtw</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Tang, Zuqi</creator><creator>Le-menach, Yvonnick</creator><creator>Creusé, E</creator><creator>Nicaise, S</creator><creator>Piriou, F</creator><creator>Némitz, N</creator><general>Emerald Group Publishing Limited</general><general>Emerald</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5402-5858</orcidid><orcidid>https://orcid.org/0000-0001-8032-3886</orcidid><orcidid>https://orcid.org/0000-0003-3673-3495</orcidid></search><sort><creationdate>20150101</creationdate><title>A posteriori residual error estimators with mixed boundary conditions for quasi-static electromagnetic problems</title><author>Tang, Zuqi ; Le-menach, Yvonnick ; Creusé, E ; Nicaise, S ; Piriou, F ; Némitz, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-f7b32960148688287511e8a4415705cb52bcb606c65df56147f4111f50e54cdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundary conditions</topic><topic>Efficiency</topic><topic>Electrical &amp; electronic engineering</topic><topic>Engineering</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Estimators</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Formulations</topic><topic>Harmonics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Zuqi</creatorcontrib><creatorcontrib>Le-menach, Yvonnick</creatorcontrib><creatorcontrib>Creusé, E</creatorcontrib><creatorcontrib>Nicaise, S</creatorcontrib><creatorcontrib>Piriou, F</creatorcontrib><creatorcontrib>Némitz, N</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Compel</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Zuqi</au><au>Le-menach, Yvonnick</au><au>Creusé, E</au><au>Nicaise, S</au><au>Piriou, F</au><au>Némitz, N</au><au>Demenko, Ivo Doležel, Kay Hameyer, Andrzej</au><au>Andrzej Demenko, Ivo Dolezel, Kay Hameyer, Wojciech Pietrowski and Krzysztof Zawirski</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A posteriori residual error estimators with mixed boundary conditions for quasi-static electromagnetic problems</atitle><jtitle>Compel</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>34</volume><issue>3</issue><spage>724</spage><epage>739</epage><pages>724-739</pages><issn>0332-1649</issn><eissn>2054-5606</eissn><coden>CODUDU</coden><abstract>Purpose – The purpose of this paper is to propose some a posteriori residual error estimators (REEs)to evaluate the accuracy of the finite element method for quasi-static electromagnetic problems with mixed boundary conditions. Both classical magnetodynamic A-ϕ and T-Ω formulations in harmonic case are analysed. As an example of application the estimated error maps of an electromagnetic system are studied. At last, a remeshing process is done according to the estimated error maps. Design/methodology/approach – The paper proposes to analyze the efficiency of numerical REEs in the case of magnetodynamic harmonic formulations. The deal is to determine the areas where it is necessary to improve the mesh. Moreover the error estimators are applied for structures with mixed boundary conditions. Findings – The studied application shows the possibilities of the residual error estimators in the case of electromagnetic structures. The comparison of the remeshed show the improvement of the obtained solution when the authors compare with a reference one. Research limitations/implications – The paper provides some interesting results in the case of magnetodynamic harmonic formulations in terms of potentials. Both classical formulations are studied. Practical implications – The paper provides some informations to develop the proposed formulations in the software using finite element method. Social implications – The paper deals with the possibility to improve the determination of the meshes in the analysis of electromagnetic structure with the finite element method. The proposed method can be a good solution to obtain an optimal mesh for a given numerical error. Originality/value – The paper proposes some elements of solution for the numerical analysis of electromagnetic structures. More particularly the results can be used to determine the good meshes of the finite element method.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/COMPEL-10-2014-0256</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5402-5858</orcidid><orcidid>https://orcid.org/0000-0001-8032-3886</orcidid><orcidid>https://orcid.org/0000-0003-3673-3495</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0332-1649
ispartof Compel, 2015-01, Vol.34 (3), p.724-739
issn 0332-1649
2054-5606
language eng
recordid cdi_crossref_primary_10_1108_COMPEL_10_2014_0256
source ABI/INFORM global; Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)
subjects Boundary conditions
Efficiency
Electrical & electronic engineering
Engineering
Error analysis
Errors
Estimators
Finite element analysis
Finite element method
Formulations
Harmonics
Mathematical analysis
Mathematical models
Mathematics
Numerical Analysis
title A posteriori residual error estimators with mixed boundary conditions for quasi-static electromagnetic problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20posteriori%20residual%20error%20estimators%20with%20mixed%20boundary%20conditions%20for%20quasi-static%20electromagnetic%20problems&rft.jtitle=Compel&rft.au=Tang,%20Zuqi&rft.date=2015-01-01&rft.volume=34&rft.issue=3&rft.spage=724&rft.epage=739&rft.pages=724-739&rft.issn=0332-1649&rft.eissn=2054-5606&rft.coden=CODUDU&rft_id=info:doi/10.1108/COMPEL-10-2014-0256&rft_dat=%3Cproquest_cross%3E3676514071%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-f7b32960148688287511e8a4415705cb52bcb606c65df56147f4111f50e54cdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1679010446&rft_id=info:pmid/&rfr_iscdi=true