Loading…

Environmental impacts cost assessment model of residential building using an artificial neural network

PurposeBuildings are major contributors to greenhouse gases (GHG) along the various stages of the building life cycle. A range of tools have been utilised for estimating building energy use and environmental impacts; these are time-consuming and require massive data that are not necessarily availabl...

Full description

Saved in:
Bibliographic Details
Published in:Engineering, construction, and architectural management construction, and architectural management, 2021-11, Vol.28 (10), p.3190-3215
Main Authors: Hamida, Amneh, Alsudairi, Abdulsalam, Alshaibani, Khalid, Alshamrani, Othman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c314t-2dcd7af4f794c6a05281db433d4096b2c30554f555218fd20852132e40d460a23
cites cdi_FETCH-LOGICAL-c314t-2dcd7af4f794c6a05281db433d4096b2c30554f555218fd20852132e40d460a23
container_end_page 3215
container_issue 10
container_start_page 3190
container_title Engineering, construction, and architectural management
container_volume 28
creator Hamida, Amneh
Alsudairi, Abdulsalam
Alshaibani, Khalid
Alshamrani, Othman
description PurposeBuildings are major contributors to greenhouse gases (GHG) along the various stages of the building life cycle. A range of tools have been utilised for estimating building energy use and environmental impacts; these are time-consuming and require massive data that are not necessarily available during early design stages. Therefore, this study aimed to develop an Environmental Impacts Cost Assessment Model (EICAM) that quantifies both energy and environmental costs for residential buildings.Design/methodology/approachAn Artificial Neural Network (ANN) was employed to develop the EICAM. The model consists of six input parameters, including wall type, roof type, glazing type, window to wall ratio (WWR), shading device and building orientation. In addition, the model calculates four measures: annual energy cost, operational carbon over 20 years, envelope embodied carbon and total carbon per square metre. The ANN architecture is 6:13:4:4, where the conjugate gradient algorithm was applied to train the model and minimise the mean squared error (MSE). Furthermore, regression analysis for the ANN prediction for each output was performed.FindingsThe MSE was minimised to 0.016 while training the model. Also, the correlation between each ANN output and the actual output was very strong, with an R2 value for each output of almost 0.998. Moreover, validation was conducted for each output, with the error percentages calculated at 0.26%, 0.25%, 0.03% and 0.27% for the annual energy cost, operational carbon, envelope materials embodied carbon and total carbon per square metre, respectively. Accordingly, the EICAM contributes to enhancing design decision-making concerning energy consumption and carbon emissions in the early design stages.Research limitations/implicationsThis study provides theoretical implications to the domain of building environmental impact assessment through illustrating a systematic approach for developing an energy-based prediction model that generates four environmental-oriented outputs, namely energy cost, operational energy carbon, envelope embodied carbon, and total carbon. The model developed has practical implications for the architectural/engineering (A/E) industries by providing a useful tool to easily predict environmental impact costs during the early design phase. This would enable designers in Saudi Arabia to make effective design decisions that would increase sustainability in the building life cycle.Originality/valueBy providing
doi_str_mv 10.1108/ECAM-06-2020-0450
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1108_ECAM_06_2020_0450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2594373281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-2dcd7af4f794c6a05281db433d4096b2c30554f555218fd20852132e40d460a23</originalsourceid><addsrcrecordid>eNptUU1LAzEQDaJgrf4AbwHP0cnXdvdYSv0AxYuCt5DmQ1J3NzXZVfz3Zq0XwcvMMPPeG-YNQucULimF-mq9Wj4QqAgDBgSEhAM0o7yShHH2cohm0FQNaZq6PkYnOW8BaC0knyG_7j9Cin3n-kG3OHQ7bYaMTcwD1jm7nKcJ7qJ1LY4eJ5eDLZ1QwJsxtDb0r3jMU9Q91mkIPphp2Lsx_aThM6a3U3TkdZvd2W-eo-fr9dPqltw_3tytlvfEcCoGwqyxC-2FXzTCVBokq6ndCM6tKAdsmOEgpfBSSkZrbxnUpeDMCbCiAs34HF3sdXcpvo8uD2obx9SXlYrJRvAFL4oFRfcok2LOyXm1S6HT6UtRUJOdarJTQaUmO9VkZ-HAnuM6Vw6z_1L-fIB_A83Idzk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2594373281</pqid></control><display><type>article</type><title>Environmental impacts cost assessment model of residential building using an artificial neural network</title><source>ABI/INFORM Global</source><source>Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)</source><creator>Hamida, Amneh ; Alsudairi, Abdulsalam ; Alshaibani, Khalid ; Alshamrani, Othman</creator><creatorcontrib>Hamida, Amneh ; Alsudairi, Abdulsalam ; Alshaibani, Khalid ; Alshamrani, Othman</creatorcontrib><description>PurposeBuildings are major contributors to greenhouse gases (GHG) along the various stages of the building life cycle. A range of tools have been utilised for estimating building energy use and environmental impacts; these are time-consuming and require massive data that are not necessarily available during early design stages. Therefore, this study aimed to develop an Environmental Impacts Cost Assessment Model (EICAM) that quantifies both energy and environmental costs for residential buildings.Design/methodology/approachAn Artificial Neural Network (ANN) was employed to develop the EICAM. The model consists of six input parameters, including wall type, roof type, glazing type, window to wall ratio (WWR), shading device and building orientation. In addition, the model calculates four measures: annual energy cost, operational carbon over 20 years, envelope embodied carbon and total carbon per square metre. The ANN architecture is 6:13:4:4, where the conjugate gradient algorithm was applied to train the model and minimise the mean squared error (MSE). Furthermore, regression analysis for the ANN prediction for each output was performed.FindingsThe MSE was minimised to 0.016 while training the model. Also, the correlation between each ANN output and the actual output was very strong, with an R2 value for each output of almost 0.998. Moreover, validation was conducted for each output, with the error percentages calculated at 0.26%, 0.25%, 0.03% and 0.27% for the annual energy cost, operational carbon, envelope materials embodied carbon and total carbon per square metre, respectively. Accordingly, the EICAM contributes to enhancing design decision-making concerning energy consumption and carbon emissions in the early design stages.Research limitations/implicationsThis study provides theoretical implications to the domain of building environmental impact assessment through illustrating a systematic approach for developing an energy-based prediction model that generates four environmental-oriented outputs, namely energy cost, operational energy carbon, envelope embodied carbon, and total carbon. The model developed has practical implications for the architectural/engineering (A/E) industries by providing a useful tool to easily predict environmental impact costs during the early design phase. This would enable designers in Saudi Arabia to make effective design decisions that would increase sustainability in the building life cycle.Originality/valueBy providing a holistic predictive model entitled EICAM, this study endeavours to bridge the gap between energy costs and environmental impacts in a predictive model for Saudi residential units. The novelty of this model is that it is an alternative tool that quantifies both energy cost, as well as building’s environmental impact, in one model by using a machine learning approach. Besides, EICAM predicts its outcomes more quickly than conventional tools such as DesignBuilder and is reliable for predicting accurate environmental impact costs during early design stages.</description><identifier>ISSN: 0969-9988</identifier><identifier>EISSN: 1365-232X</identifier><identifier>DOI: 10.1108/ECAM-06-2020-0450</identifier><language>eng</language><publisher>Bradford: Emerald Publishing Limited</publisher><subject>Algorithms ; Artificial neural networks ; Building information modeling ; Carbon ; Costs ; Datasets ; Decision making ; Design ; Energy conservation ; Energy consumption ; Energy costs ; Energy modeling ; Environmental impact ; Environmental impact assessment ; Error analysis ; Glazing ; Global warming ; Green buildings ; Greenhouse gases ; Impact prediction ; Learning theory ; Machine learning ; Neural networks ; Prediction models ; Regression analysis ; Residential buildings ; Simulation</subject><ispartof>Engineering, construction, and architectural management, 2021-11, Vol.28 (10), p.3190-3215</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-2dcd7af4f794c6a05281db433d4096b2c30554f555218fd20852132e40d460a23</citedby><cites>FETCH-LOGICAL-c314t-2dcd7af4f794c6a05281db433d4096b2c30554f555218fd20852132e40d460a23</cites><orcidid>0000-0003-1646-2085 ; 0000-0002-0970-6187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2594373281/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2594373281?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,11669,27905,27906,36041,44344,74644</link.rule.ids></links><search><creatorcontrib>Hamida, Amneh</creatorcontrib><creatorcontrib>Alsudairi, Abdulsalam</creatorcontrib><creatorcontrib>Alshaibani, Khalid</creatorcontrib><creatorcontrib>Alshamrani, Othman</creatorcontrib><title>Environmental impacts cost assessment model of residential building using an artificial neural network</title><title>Engineering, construction, and architectural management</title><description>PurposeBuildings are major contributors to greenhouse gases (GHG) along the various stages of the building life cycle. A range of tools have been utilised for estimating building energy use and environmental impacts; these are time-consuming and require massive data that are not necessarily available during early design stages. Therefore, this study aimed to develop an Environmental Impacts Cost Assessment Model (EICAM) that quantifies both energy and environmental costs for residential buildings.Design/methodology/approachAn Artificial Neural Network (ANN) was employed to develop the EICAM. The model consists of six input parameters, including wall type, roof type, glazing type, window to wall ratio (WWR), shading device and building orientation. In addition, the model calculates four measures: annual energy cost, operational carbon over 20 years, envelope embodied carbon and total carbon per square metre. The ANN architecture is 6:13:4:4, where the conjugate gradient algorithm was applied to train the model and minimise the mean squared error (MSE). Furthermore, regression analysis for the ANN prediction for each output was performed.FindingsThe MSE was minimised to 0.016 while training the model. Also, the correlation between each ANN output and the actual output was very strong, with an R2 value for each output of almost 0.998. Moreover, validation was conducted for each output, with the error percentages calculated at 0.26%, 0.25%, 0.03% and 0.27% for the annual energy cost, operational carbon, envelope materials embodied carbon and total carbon per square metre, respectively. Accordingly, the EICAM contributes to enhancing design decision-making concerning energy consumption and carbon emissions in the early design stages.Research limitations/implicationsThis study provides theoretical implications to the domain of building environmental impact assessment through illustrating a systematic approach for developing an energy-based prediction model that generates four environmental-oriented outputs, namely energy cost, operational energy carbon, envelope embodied carbon, and total carbon. The model developed has practical implications for the architectural/engineering (A/E) industries by providing a useful tool to easily predict environmental impact costs during the early design phase. This would enable designers in Saudi Arabia to make effective design decisions that would increase sustainability in the building life cycle.Originality/valueBy providing a holistic predictive model entitled EICAM, this study endeavours to bridge the gap between energy costs and environmental impacts in a predictive model for Saudi residential units. The novelty of this model is that it is an alternative tool that quantifies both energy cost, as well as building’s environmental impact, in one model by using a machine learning approach. Besides, EICAM predicts its outcomes more quickly than conventional tools such as DesignBuilder and is reliable for predicting accurate environmental impact costs during early design stages.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Building information modeling</subject><subject>Carbon</subject><subject>Costs</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Design</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy costs</subject><subject>Energy modeling</subject><subject>Environmental impact</subject><subject>Environmental impact assessment</subject><subject>Error analysis</subject><subject>Glazing</subject><subject>Global warming</subject><subject>Green buildings</subject><subject>Greenhouse gases</subject><subject>Impact prediction</subject><subject>Learning theory</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Prediction models</subject><subject>Regression analysis</subject><subject>Residential buildings</subject><subject>Simulation</subject><issn>0969-9988</issn><issn>1365-232X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNptUU1LAzEQDaJgrf4AbwHP0cnXdvdYSv0AxYuCt5DmQ1J3NzXZVfz3Zq0XwcvMMPPeG-YNQucULimF-mq9Wj4QqAgDBgSEhAM0o7yShHH2cohm0FQNaZq6PkYnOW8BaC0knyG_7j9Cin3n-kG3OHQ7bYaMTcwD1jm7nKcJ7qJ1LY4eJ5eDLZ1QwJsxtDb0r3jMU9Q91mkIPphp2Lsx_aThM6a3U3TkdZvd2W-eo-fr9dPqltw_3tytlvfEcCoGwqyxC-2FXzTCVBokq6ndCM6tKAdsmOEgpfBSSkZrbxnUpeDMCbCiAs34HF3sdXcpvo8uD2obx9SXlYrJRvAFL4oFRfcok2LOyXm1S6HT6UtRUJOdarJTQaUmO9VkZ-HAnuM6Vw6z_1L-fIB_A83Idzk</recordid><startdate>20211104</startdate><enddate>20211104</enddate><creator>Hamida, Amneh</creator><creator>Alsudairi, Abdulsalam</creator><creator>Alshaibani, Khalid</creator><creator>Alshamrani, Othman</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7TA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1646-2085</orcidid><orcidid>https://orcid.org/0000-0002-0970-6187</orcidid></search><sort><creationdate>20211104</creationdate><title>Environmental impacts cost assessment model of residential building using an artificial neural network</title><author>Hamida, Amneh ; Alsudairi, Abdulsalam ; Alshaibani, Khalid ; Alshamrani, Othman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-2dcd7af4f794c6a05281db433d4096b2c30554f555218fd20852132e40d460a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Building information modeling</topic><topic>Carbon</topic><topic>Costs</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Design</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy costs</topic><topic>Energy modeling</topic><topic>Environmental impact</topic><topic>Environmental impact assessment</topic><topic>Error analysis</topic><topic>Glazing</topic><topic>Global warming</topic><topic>Green buildings</topic><topic>Greenhouse gases</topic><topic>Impact prediction</topic><topic>Learning theory</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Prediction models</topic><topic>Regression analysis</topic><topic>Residential buildings</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamida, Amneh</creatorcontrib><creatorcontrib>Alsudairi, Abdulsalam</creatorcontrib><creatorcontrib>Alshaibani, Khalid</creatorcontrib><creatorcontrib>Alshamrani, Othman</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering, construction, and architectural management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamida, Amneh</au><au>Alsudairi, Abdulsalam</au><au>Alshaibani, Khalid</au><au>Alshamrani, Othman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmental impacts cost assessment model of residential building using an artificial neural network</atitle><jtitle>Engineering, construction, and architectural management</jtitle><date>2021-11-04</date><risdate>2021</risdate><volume>28</volume><issue>10</issue><spage>3190</spage><epage>3215</epage><pages>3190-3215</pages><issn>0969-9988</issn><eissn>1365-232X</eissn><abstract>PurposeBuildings are major contributors to greenhouse gases (GHG) along the various stages of the building life cycle. A range of tools have been utilised for estimating building energy use and environmental impacts; these are time-consuming and require massive data that are not necessarily available during early design stages. Therefore, this study aimed to develop an Environmental Impacts Cost Assessment Model (EICAM) that quantifies both energy and environmental costs for residential buildings.Design/methodology/approachAn Artificial Neural Network (ANN) was employed to develop the EICAM. The model consists of six input parameters, including wall type, roof type, glazing type, window to wall ratio (WWR), shading device and building orientation. In addition, the model calculates four measures: annual energy cost, operational carbon over 20 years, envelope embodied carbon and total carbon per square metre. The ANN architecture is 6:13:4:4, where the conjugate gradient algorithm was applied to train the model and minimise the mean squared error (MSE). Furthermore, regression analysis for the ANN prediction for each output was performed.FindingsThe MSE was minimised to 0.016 while training the model. Also, the correlation between each ANN output and the actual output was very strong, with an R2 value for each output of almost 0.998. Moreover, validation was conducted for each output, with the error percentages calculated at 0.26%, 0.25%, 0.03% and 0.27% for the annual energy cost, operational carbon, envelope materials embodied carbon and total carbon per square metre, respectively. Accordingly, the EICAM contributes to enhancing design decision-making concerning energy consumption and carbon emissions in the early design stages.Research limitations/implicationsThis study provides theoretical implications to the domain of building environmental impact assessment through illustrating a systematic approach for developing an energy-based prediction model that generates four environmental-oriented outputs, namely energy cost, operational energy carbon, envelope embodied carbon, and total carbon. The model developed has practical implications for the architectural/engineering (A/E) industries by providing a useful tool to easily predict environmental impact costs during the early design phase. This would enable designers in Saudi Arabia to make effective design decisions that would increase sustainability in the building life cycle.Originality/valueBy providing a holistic predictive model entitled EICAM, this study endeavours to bridge the gap between energy costs and environmental impacts in a predictive model for Saudi residential units. The novelty of this model is that it is an alternative tool that quantifies both energy cost, as well as building’s environmental impact, in one model by using a machine learning approach. Besides, EICAM predicts its outcomes more quickly than conventional tools such as DesignBuilder and is reliable for predicting accurate environmental impact costs during early design stages.</abstract><cop>Bradford</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/ECAM-06-2020-0450</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-1646-2085</orcidid><orcidid>https://orcid.org/0000-0002-0970-6187</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0969-9988
ispartof Engineering, construction, and architectural management, 2021-11, Vol.28 (10), p.3190-3215
issn 0969-9988
1365-232X
language eng
recordid cdi_crossref_primary_10_1108_ECAM_06_2020_0450
source ABI/INFORM Global; Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)
subjects Algorithms
Artificial neural networks
Building information modeling
Carbon
Costs
Datasets
Decision making
Design
Energy conservation
Energy consumption
Energy costs
Energy modeling
Environmental impact
Environmental impact assessment
Error analysis
Glazing
Global warming
Green buildings
Greenhouse gases
Impact prediction
Learning theory
Machine learning
Neural networks
Prediction models
Regression analysis
Residential buildings
Simulation
title Environmental impacts cost assessment model of residential building using an artificial neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmental%20impacts%20cost%20assessment%20model%20of%20residential%20building%20using%20an%20artificial%20neural%20network&rft.jtitle=Engineering,%20construction,%20and%20architectural%20management&rft.au=Hamida,%20Amneh&rft.date=2021-11-04&rft.volume=28&rft.issue=10&rft.spage=3190&rft.epage=3215&rft.pages=3190-3215&rft.issn=0969-9988&rft.eissn=1365-232X&rft_id=info:doi/10.1108/ECAM-06-2020-0450&rft_dat=%3Cproquest_cross%3E2594373281%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-2dcd7af4f794c6a05281db433d4096b2c30554f555218fd20852132e40d460a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2594373281&rft_id=info:pmid/&rfr_iscdi=true