Loading…

Development of a direct NGM(1,1) prediction model based on interval grey numbers

PurposeThe purpose of this paper is to construct an interval grey number NGM(1,1) direct prediction model (abbreviated as IGNGM(1,1)), which need not transform interval grey numbers sequences into real number sequences, and the Markov model is used to optimize residual sequences of IGNGM(1,1) model....

Full description

Saved in:
Bibliographic Details
Published in:Grey systems 2022-01, Vol.12 (1), p.60-77
Main Authors: Li, Ye, Ding, Yuanping, Jing, Yaqian, Guo, Sandang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:PurposeThe purpose of this paper is to construct an interval grey number NGM(1,1) direct prediction model (abbreviated as IGNGM(1,1)), which need not transform interval grey numbers sequences into real number sequences, and the Markov model is used to optimize residual sequences of IGNGM(1,1) model.Design/methodology/approachA definition equation of IGNGM(1,1) model is proposed in this paper, and its time response function is solved by recursive iteration method. Next, the optimal weight of development coefficients of two boundaries is obtained by genetic algorithm, which is designed by minimizing the average relative error based on time weighted. In addition to that, the Markov model is used to modify residual sequences.FindingsThe interval grey numbers’ sequences can be predicted directly by IGNGM(1,1) model and its residual sequences can be amended by Markov model. A case study shows that the proposed model has higher accuracy in prediction.Practical implicationsUncertainty and volatility information is widespread in practical applications, and the information can be characterized by interval grey numbers. In this paper, an interval grey numbers direct prediction model is proposed, which provides a method for predicting the uncertainty information in the real world.Originality/valueThe main contribution of this paper is to propose an IGNGM(1,1) model which can realize interval grey numbers prediction without transforming them into real number and solve the optimal weight of integral development coefficient by genetic algorithm so as to avoid the distortion of prediction results. Moreover, the Markov model is used to modify residual sequences to further improve the modeling accuracy.
ISSN:2043-9377
2043-9385
DOI:10.1108/GS-07-2020-0097