Loading…

The effect of lubricant viscosity model with improver on friction and lubrication of piston skirt-cylinder liner conjunction

Purpose This paper aims to investigate the effect of lubricant viscosity model with improver on friction and lubrication of piston skirt-cylinder liner conjunction. Design/methodology/approach A dynamic calculation model is established for the piston skirt-cylinder liner conjunction of a heavy-duty...

Full description

Saved in:
Bibliographic Details
Published in:Industrial lubrication and tribology 2020-01, Vol.72 (1), p.157-164
Main Authors: Xin, Gu, Liu, Xiao-Ri, Cheng, Dong-Kang, Zheng, Qing-Ping, Li, Meng-Han, Sun, Nan-Nan, Min, Chun-Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c264t-a8295cc79c5d1e3d673599ff1d184eac75a40d0510e5931305593e153af6a1a93
container_end_page 164
container_issue 1
container_start_page 157
container_title Industrial lubrication and tribology
container_volume 72
creator Xin, Gu
Liu, Xiao-Ri
Cheng, Dong-Kang
Zheng, Qing-Ping
Li, Meng-Han
Sun, Nan-Nan
Min, Chun-Hua
description Purpose This paper aims to investigate the effect of lubricant viscosity model with improver on friction and lubrication of piston skirt-cylinder liner conjunction. Design/methodology/approach A dynamic calculation model is established for the piston skirt-cylinder liner conjunction of a heavy-duty commercial diesel engine, to explore the effects of two kinds of lube oil viscosity models named after polyalkyle-metacrylate-1 (PAMA1) and styrene-isoprene-copolymer (SICP) improvers on the maximum oil film viscosity, the minimum oil film thickness, the peak oil film pressure, the maximum shear rate, the friction force and the total friction power loss. Findings The variation trends with the crank angle of the above parameters are not changed with the difference of improvers, while obvious numerical differences are found except the maximum oil film pressure. The minimum oil film thickness and maximum shear rate of PAMA1 are larger than that of SICP, the maximum oil film viscosity of SICP is larger than that of PAMA1, which indicates that the shear-thinning effect of PAMA1 is greater, the maximum friction force on the piston of SICP is larger than that of PAMA1, and the total friction power consumption is also larger, the average friction power consumptions of SICP and PAMA1 are 385.4 and 262.8 W, respectively, with the relative difference of 31.8 per cent. Originality/value The influence of different lubricating oil additive models on the lubrication and friction of piston skirt-cylinder liner conjunction is simulated and analyzed.
doi_str_mv 10.1108/ILT-08-2018-0322
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1108_ILT_08_2018_0322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2336990417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-a8295cc79c5d1e3d673599ff1d184eac75a40d0510e5931305593e153af6a1a93</originalsourceid><addsrcrecordid>eNptkctLAzEQxoMoWB93jwHPsZPNZrM5SvFRKHip5xCzCU3dR02ylYJ_vGmrB8HLfBP4fjPhG4RuKNxRCvV0vlgSqEkBtCbAiuIETajgNeFC8FM0AWAVqYUsztFFjGsA4FBWE_S1XFlsnbMm4cHhdnwL3ug-4a2PZog-7XA3NLbFnz6tsO82YdjagIceu2xMPje6b365wzuP2fiYchfffUjE7FrfNxnKkqsZ-vXYH9ArdOZ0G-31j16i18eH5eyZLF6e5rP7BTFFVSai60JyY4Q0vKGWNZVgXErnaEPr0mojuC6hAU7BcskoA57FUs60qzTVkl2i2-Pc_PuP0cak1sMY-rxSFYxVUkJJRXbB0WXCEGOwTm2C73TYKQpqn7HKGass-4zVPuOMTI-I7WzQbfMf8ecq7Bv6kX88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2336990417</pqid></control><display><type>article</type><title>The effect of lubricant viscosity model with improver on friction and lubrication of piston skirt-cylinder liner conjunction</title><source>Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)</source><creator>Xin, Gu ; Liu, Xiao-Ri ; Cheng, Dong-Kang ; Zheng, Qing-Ping ; Li, Meng-Han ; Sun, Nan-Nan ; Min, Chun-Hua</creator><creatorcontrib>Xin, Gu ; Liu, Xiao-Ri ; Cheng, Dong-Kang ; Zheng, Qing-Ping ; Li, Meng-Han ; Sun, Nan-Nan ; Min, Chun-Hua</creatorcontrib><description>Purpose This paper aims to investigate the effect of lubricant viscosity model with improver on friction and lubrication of piston skirt-cylinder liner conjunction. Design/methodology/approach A dynamic calculation model is established for the piston skirt-cylinder liner conjunction of a heavy-duty commercial diesel engine, to explore the effects of two kinds of lube oil viscosity models named after polyalkyle-metacrylate-1 (PAMA1) and styrene-isoprene-copolymer (SICP) improvers on the maximum oil film viscosity, the minimum oil film thickness, the peak oil film pressure, the maximum shear rate, the friction force and the total friction power loss. Findings The variation trends with the crank angle of the above parameters are not changed with the difference of improvers, while obvious numerical differences are found except the maximum oil film pressure. The minimum oil film thickness and maximum shear rate of PAMA1 are larger than that of SICP, the maximum oil film viscosity of SICP is larger than that of PAMA1, which indicates that the shear-thinning effect of PAMA1 is greater, the maximum friction force on the piston of SICP is larger than that of PAMA1, and the total friction power consumption is also larger, the average friction power consumptions of SICP and PAMA1 are 385.4 and 262.8 W, respectively, with the relative difference of 31.8 per cent. Originality/value The influence of different lubricating oil additive models on the lubrication and friction of piston skirt-cylinder liner conjunction is simulated and analyzed.</description><identifier>ISSN: 0036-8792</identifier><identifier>EISSN: 1758-5775</identifier><identifier>DOI: 10.1108/ILT-08-2018-0322</identifier><language>eng</language><publisher>Bradford: Emerald Publishing Limited</publisher><subject>Boundary conditions ; Computer simulation ; Consumption ; Cylinder liners ; Diesel engines ; Film thickness ; Friction ; Isoprene ; Lubricants ; Lubricants &amp; lubrication ; Lubricating oils ; Lubrication ; Maintenance management ; Normal distribution ; Peak oil ; Piston rings ; Power consumption ; Power loss ; Research methodology ; Researchers ; Shear rate ; Shear thinning (liquids) ; Viscosity</subject><ispartof>Industrial lubrication and tribology, 2020-01, Vol.72 (1), p.157-164</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-a8295cc79c5d1e3d673599ff1d184eac75a40d0510e5931305593e153af6a1a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Xin, Gu</creatorcontrib><creatorcontrib>Liu, Xiao-Ri</creatorcontrib><creatorcontrib>Cheng, Dong-Kang</creatorcontrib><creatorcontrib>Zheng, Qing-Ping</creatorcontrib><creatorcontrib>Li, Meng-Han</creatorcontrib><creatorcontrib>Sun, Nan-Nan</creatorcontrib><creatorcontrib>Min, Chun-Hua</creatorcontrib><title>The effect of lubricant viscosity model with improver on friction and lubrication of piston skirt-cylinder liner conjunction</title><title>Industrial lubrication and tribology</title><description>Purpose This paper aims to investigate the effect of lubricant viscosity model with improver on friction and lubrication of piston skirt-cylinder liner conjunction. Design/methodology/approach A dynamic calculation model is established for the piston skirt-cylinder liner conjunction of a heavy-duty commercial diesel engine, to explore the effects of two kinds of lube oil viscosity models named after polyalkyle-metacrylate-1 (PAMA1) and styrene-isoprene-copolymer (SICP) improvers on the maximum oil film viscosity, the minimum oil film thickness, the peak oil film pressure, the maximum shear rate, the friction force and the total friction power loss. Findings The variation trends with the crank angle of the above parameters are not changed with the difference of improvers, while obvious numerical differences are found except the maximum oil film pressure. The minimum oil film thickness and maximum shear rate of PAMA1 are larger than that of SICP, the maximum oil film viscosity of SICP is larger than that of PAMA1, which indicates that the shear-thinning effect of PAMA1 is greater, the maximum friction force on the piston of SICP is larger than that of PAMA1, and the total friction power consumption is also larger, the average friction power consumptions of SICP and PAMA1 are 385.4 and 262.8 W, respectively, with the relative difference of 31.8 per cent. Originality/value The influence of different lubricating oil additive models on the lubrication and friction of piston skirt-cylinder liner conjunction is simulated and analyzed.</description><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Consumption</subject><subject>Cylinder liners</subject><subject>Diesel engines</subject><subject>Film thickness</subject><subject>Friction</subject><subject>Isoprene</subject><subject>Lubricants</subject><subject>Lubricants &amp; lubrication</subject><subject>Lubricating oils</subject><subject>Lubrication</subject><subject>Maintenance management</subject><subject>Normal distribution</subject><subject>Peak oil</subject><subject>Piston rings</subject><subject>Power consumption</subject><subject>Power loss</subject><subject>Research methodology</subject><subject>Researchers</subject><subject>Shear rate</subject><subject>Shear thinning (liquids)</subject><subject>Viscosity</subject><issn>0036-8792</issn><issn>1758-5775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkctLAzEQxoMoWB93jwHPsZPNZrM5SvFRKHip5xCzCU3dR02ylYJ_vGmrB8HLfBP4fjPhG4RuKNxRCvV0vlgSqEkBtCbAiuIETajgNeFC8FM0AWAVqYUsztFFjGsA4FBWE_S1XFlsnbMm4cHhdnwL3ug-4a2PZog-7XA3NLbFnz6tsO82YdjagIceu2xMPje6b365wzuP2fiYchfffUjE7FrfNxnKkqsZ-vXYH9ArdOZ0G-31j16i18eH5eyZLF6e5rP7BTFFVSai60JyY4Q0vKGWNZVgXErnaEPr0mojuC6hAU7BcskoA57FUs60qzTVkl2i2-Pc_PuP0cak1sMY-rxSFYxVUkJJRXbB0WXCEGOwTm2C73TYKQpqn7HKGass-4zVPuOMTI-I7WzQbfMf8ecq7Bv6kX88</recordid><startdate>20200114</startdate><enddate>20200114</enddate><creator>Xin, Gu</creator><creator>Liu, Xiao-Ri</creator><creator>Cheng, Dong-Kang</creator><creator>Zheng, Qing-Ping</creator><creator>Li, Meng-Han</creator><creator>Sun, Nan-Nan</creator><creator>Min, Chun-Hua</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0F</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20200114</creationdate><title>The effect of lubricant viscosity model with improver on friction and lubrication of piston skirt-cylinder liner conjunction</title><author>Xin, Gu ; Liu, Xiao-Ri ; Cheng, Dong-Kang ; Zheng, Qing-Ping ; Li, Meng-Han ; Sun, Nan-Nan ; Min, Chun-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-a8295cc79c5d1e3d673599ff1d184eac75a40d0510e5931305593e153af6a1a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Consumption</topic><topic>Cylinder liners</topic><topic>Diesel engines</topic><topic>Film thickness</topic><topic>Friction</topic><topic>Isoprene</topic><topic>Lubricants</topic><topic>Lubricants &amp; lubrication</topic><topic>Lubricating oils</topic><topic>Lubrication</topic><topic>Maintenance management</topic><topic>Normal distribution</topic><topic>Peak oil</topic><topic>Piston rings</topic><topic>Power consumption</topic><topic>Power loss</topic><topic>Research methodology</topic><topic>Researchers</topic><topic>Shear rate</topic><topic>Shear thinning (liquids)</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Gu</creatorcontrib><creatorcontrib>Liu, Xiao-Ri</creatorcontrib><creatorcontrib>Cheng, Dong-Kang</creatorcontrib><creatorcontrib>Zheng, Qing-Ping</creatorcontrib><creatorcontrib>Li, Meng-Han</creatorcontrib><creatorcontrib>Sun, Nan-Nan</creatorcontrib><creatorcontrib>Min, Chun-Hua</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Engineering Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Industrial lubrication and tribology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Gu</au><au>Liu, Xiao-Ri</au><au>Cheng, Dong-Kang</au><au>Zheng, Qing-Ping</au><au>Li, Meng-Han</au><au>Sun, Nan-Nan</au><au>Min, Chun-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of lubricant viscosity model with improver on friction and lubrication of piston skirt-cylinder liner conjunction</atitle><jtitle>Industrial lubrication and tribology</jtitle><date>2020-01-14</date><risdate>2020</risdate><volume>72</volume><issue>1</issue><spage>157</spage><epage>164</epage><pages>157-164</pages><issn>0036-8792</issn><eissn>1758-5775</eissn><abstract>Purpose This paper aims to investigate the effect of lubricant viscosity model with improver on friction and lubrication of piston skirt-cylinder liner conjunction. Design/methodology/approach A dynamic calculation model is established for the piston skirt-cylinder liner conjunction of a heavy-duty commercial diesel engine, to explore the effects of two kinds of lube oil viscosity models named after polyalkyle-metacrylate-1 (PAMA1) and styrene-isoprene-copolymer (SICP) improvers on the maximum oil film viscosity, the minimum oil film thickness, the peak oil film pressure, the maximum shear rate, the friction force and the total friction power loss. Findings The variation trends with the crank angle of the above parameters are not changed with the difference of improvers, while obvious numerical differences are found except the maximum oil film pressure. The minimum oil film thickness and maximum shear rate of PAMA1 are larger than that of SICP, the maximum oil film viscosity of SICP is larger than that of PAMA1, which indicates that the shear-thinning effect of PAMA1 is greater, the maximum friction force on the piston of SICP is larger than that of PAMA1, and the total friction power consumption is also larger, the average friction power consumptions of SICP and PAMA1 are 385.4 and 262.8 W, respectively, with the relative difference of 31.8 per cent. Originality/value The influence of different lubricating oil additive models on the lubrication and friction of piston skirt-cylinder liner conjunction is simulated and analyzed.</abstract><cop>Bradford</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/ILT-08-2018-0322</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8792
ispartof Industrial lubrication and tribology, 2020-01, Vol.72 (1), p.157-164
issn 0036-8792
1758-5775
language eng
recordid cdi_crossref_primary_10_1108_ILT_08_2018_0322
source Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)
subjects Boundary conditions
Computer simulation
Consumption
Cylinder liners
Diesel engines
Film thickness
Friction
Isoprene
Lubricants
Lubricants & lubrication
Lubricating oils
Lubrication
Maintenance management
Normal distribution
Peak oil
Piston rings
Power consumption
Power loss
Research methodology
Researchers
Shear rate
Shear thinning (liquids)
Viscosity
title The effect of lubricant viscosity model with improver on friction and lubrication of piston skirt-cylinder liner conjunction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20lubricant%20viscosity%20model%20with%20improver%20on%20friction%20and%20lubrication%20of%20piston%20skirt-cylinder%20liner%20conjunction&rft.jtitle=Industrial%20lubrication%20and%20tribology&rft.au=Xin,%20Gu&rft.date=2020-01-14&rft.volume=72&rft.issue=1&rft.spage=157&rft.epage=164&rft.pages=157-164&rft.issn=0036-8792&rft.eissn=1758-5775&rft_id=info:doi/10.1108/ILT-08-2018-0322&rft_dat=%3Cproquest_cross%3E2336990417%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-a8295cc79c5d1e3d673599ff1d184eac75a40d0510e5931305593e153af6a1a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2336990417&rft_id=info:pmid/&rfr_iscdi=true