Loading…

Study on the performance of gas foil thrust bearings with stacked bump foils

Purpose This paper aims to improve the load capacity of gas foil thrust bearing (GFTB) and to introduce and study a novel bearing with stacked bump foils. Design/methodology/approach For the proposed novel GFTB supported by stacked foils, some bump-type gaskets with several partial arches are insert...

Full description

Saved in:
Bibliographic Details
Published in:Industrial lubrication and tribology 2020-08, Vol.72 (6), p.761-769
Main Authors: Hu, Hongyang, Feng, Ming, Ren, Tianming
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose This paper aims to improve the load capacity of gas foil thrust bearing (GFTB) and to introduce and study a novel bearing with stacked bump foils. Design/methodology/approach For the proposed novel GFTB supported by stacked foils, some bump-type gaskets with several partial arches are inserted below the regular bump foil, and the height of each arch can be made differently. These features make the bump foil thickness and height gradually increase, which can bring enhanced support stiffness and convergent film at the trailing edge. Based on a new nonlinear bump stiffness model considering bump rounding and friction force, the finite element and finite difference method were used to solve the coupling Reynolds equation, energy equation and foil deformation equation. Finally, the structural stiffness and static characteristics of the novel GFTB were gained and compared with the traditional bearing. Findings The novel GFTB has an additional convergence effect in the parallel section, which improves the static performance of bearing. The bearing capacity, friction moment, power loss and temperature rise of the novel GFTB are all higher than those of the traditional bearing, and the static characteristics are related to the parameters of stacked bump foils. Originality/value The stacked bump foils bring a fundamental enhancement on the load capacity of GFTB. The results are expected to be helpful to bearing designers, researchers and academicians concerned. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0449/
ISSN:0036-8792
1758-5775
DOI:10.1108/ILT-10-2019-0449