Loading…
A risk analysis model for mining accidents using a fuzzy approach based on fault tree analysis
Purpose Risk analysis is a critical investigation field for many sectors and organizations to maintain the information management reliable. Since mining is one of the riskiest sectors for both workers and management, comprehensive risk analysis should be carried out. The purpose of this paper is to...
Saved in:
Published in: | Journal of enterprise information management 2018-07, Vol.31 (4), p.577-594 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
Risk analysis is a critical investigation field for many sectors and organizations to maintain the information management reliable. Since mining is one of the riskiest sectors for both workers and management, comprehensive risk analysis should be carried out. The purpose of this paper is to explore comprehensively the undesired events that may occur during a particular process with their main reasons and to perform a risk analysis for these events, by developing a risk analysis methodology. For performing risk analysis, discovering and defining the potential accidents and incidents including their root causes are important contributions of the study as distinct from the related literature. The fuzzy approach is used substantially to obtain the important inferences about the hazardous process by identifying the critical risk points in the processes. In the scope of the study, the proposed methodology is applied to an underground chrome mine and obtaining significant findings of mining risky operations is targeted.
Design/methodology/approach
Fault tree analysis and fuzzy approach are used for performing the risk analysis. When determining the probability and the consequences of the events which are essential components for the risk analysis, expressions of the heterogeneous expert group are considered by means of the linguistic terms. Fault tree analysis and fuzzy approach present a quiet convenience solution together to specify the possible accidents and incidents in the particular process and determine the values for the basis risk components.
Findings
This study primarily presents a methodology for a comprehensive risk analysis. By implementing the proposed methodology to the underground loading and conveying processes of a chrome mine, 28 different undesired events that may occur during the processes are specified. By performing risk analysis for these events, it is established that the employee’s physical constraint while working with the shovel in the fore area, the falling of materials on employees from the chute and the scaling bar injuries are the riskiest undesired events in the underground loading and conveying process of the mine.
Practical implications
The proposed methodology provides a confidential and comprehensive method for risk analysis of the undesired events in a particular process. The capability of fault tree analysis for specifying the undesired events systematically and the applicability of fuzzy approach for converting the |
---|---|
ISSN: | 1741-0398 1758-7409 |
DOI: | 10.1108/JEIM-02-2017-0035 |