Loading…

Highly sensitive electrochemical sensor based on novel Ag Nps/Ppti films for detection of hydrazine

Purpose A novel semiconducting macromolecule-polyperylene tetraamide (PPTI) was first synthesized with a simple method using 3, 4, 9, 10-perylene tetracarboxylic acid (PTCA) and hydrazine hydrate (N2H4). Design/methodology/approach The Ag nanoparticle was doped on the surface or inside of the PPTI f...

Full description

Saved in:
Bibliographic Details
Published in:Pigment & resin technology 2023-06, Vol.52 (4), p.413-421
Main Authors: Xu, Jing, Long, Xiaoju, Zhang, Jiaojing, Wu, Song
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose A novel semiconducting macromolecule-polyperylene tetraamide (PPTI) was first synthesized with a simple method using 3, 4, 9, 10-perylene tetracarboxylic acid (PTCA) and hydrazine hydrate (N2H4). Design/methodology/approach The Ag nanoparticle was doped on the surface or inside of the PPTI film to obtain a highly sensitive hydrazine sensor-Ag/PPTI, which was synthesized within one step. The structure of Ag/PPTI was characterized through various techniques such as Fourier transform infrared (FT-IR), thermogravimetric analyzer (TGA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy measurements (XPS) and scanning electronic microscopy (SEM). Findings According to cyclic voltammetry results, Ag/PPTI/GCE indicated good electrocatalytic activity toward the oxidation of hydrazine. The amperometric detection of hydrazine was then applied on Ag/PPTI/GCE. It exhibited a wide linear range from 0.05 to 50 µM, a low detection limit (S/N = 3) of 0.05 µM and high sensitivity of 0.45 µA/(µM•cm2). Originality/value In authors’ perception, this approach emerges as an effective technique for developing efficient chemical sensors for environmental pollutants.
ISSN:0369-9420
1758-6941
0369-9420
DOI:10.1108/PRT-09-2021-0120