Loading…

Overlapping object recognition: a paradigm for multiple sensor fusion

Recognizing and identifying overlapping or occluded objects is a problem typically encountered in a manufacturing setting. The resultant image distortion tends to limit the applicability of current recognition systems in that case. The proposed recognition scheme involves the utility of an appropria...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics & automation magazine 1998-09, Vol.5 (3), p.37-44
Main Authors: Intaek Kim, Vachtsevanos, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c310t-a500ee1c4faedb9d524cf5a5764c6ddbf8fd316e4d62327820068041fa8b78333
cites cdi_FETCH-LOGICAL-c310t-a500ee1c4faedb9d524cf5a5764c6ddbf8fd316e4d62327820068041fa8b78333
container_end_page 44
container_issue 3
container_start_page 37
container_title IEEE robotics & automation magazine
container_volume 5
creator Intaek Kim
Vachtsevanos, G.
description Recognizing and identifying overlapping or occluded objects is a problem typically encountered in a manufacturing setting. The resultant image distortion tends to limit the applicability of current recognition systems in that case. The proposed recognition scheme involves the utility of an appropriate suite of complementary sensors and is based upon a systematic methodology that addresses the modeling problem through a polygonal approximation and the matching task between the sensor data and stored templates through a construction, called the intervertex matrix. An example is included to illustrate the simplicity and flexibility of the proposed approach.
doi_str_mv 10.1109/100.728222
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_100_728222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>728222</ieee_id><sourcerecordid>29087916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-a500ee1c4faedb9d524cf5a5764c6ddbf8fd316e4d62327820068041fa8b78333</originalsourceid><addsrcrecordid>eNqF0MtLxDAQBvAgCq6rF4-eevIgVCePNqk3WdYHLOxFwVtJk8mSpS-TVvC_t0sXr56-GebHHD5CrincUwrFAwW4l0wxxk7IgmaZShnjn6fTDBLSouDsnFzEuAegQnG1IOvtN4Za971vd0lX7dEMSUDT7Vo_-K59THTS66Ct3zWJ60LSjPXg-xqTiG2cdjfGiV2SM6friFfHXJKP5_X76jXdbF_eVk-b1HAKQ6ozAERqhNNoq8JmTBiX6UzmwuTWVk45y2mOwuaMM6kYQK5AUKdVJRXnfElu57996L5GjEPZ-GiwrnWL3RhLVoCSBc3_h0pRJeTh490MTehiDOjKPvhGh5-SQnmodEoo50onfDNjj4h_8Hj8Bf4TcRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28818473</pqid></control><display><type>article</type><title>Overlapping object recognition: a paradigm for multiple sensor fusion</title><source>IEEE Xplore (Online service)</source><creator>Intaek Kim ; Vachtsevanos, G.</creator><creatorcontrib>Intaek Kim ; Vachtsevanos, G.</creatorcontrib><description>Recognizing and identifying overlapping or occluded objects is a problem typically encountered in a manufacturing setting. The resultant image distortion tends to limit the applicability of current recognition systems in that case. The proposed recognition scheme involves the utility of an appropriate suite of complementary sensors and is based upon a systematic methodology that addresses the modeling problem through a polygonal approximation and the matching task between the sensor data and stored templates through a construction, called the intervertex matrix. An example is included to illustrate the simplicity and flexibility of the proposed approach.</description><identifier>ISSN: 1070-9932</identifier><identifier>EISSN: 1558-223X</identifier><identifier>DOI: 10.1109/100.728222</identifier><identifier>CODEN: IRAMEB</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Image analysis ; Image segmentation ; Manufacturing ; Military computing ; Object recognition ; Robotics and automation ; Sensor fusion ; Sensor systems ; Shape</subject><ispartof>IEEE robotics &amp; automation magazine, 1998-09, Vol.5 (3), p.37-44</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-a500ee1c4faedb9d524cf5a5764c6ddbf8fd316e4d62327820068041fa8b78333</citedby><cites>FETCH-LOGICAL-c310t-a500ee1c4faedb9d524cf5a5764c6ddbf8fd316e4d62327820068041fa8b78333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/728222$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,54779</link.rule.ids></links><search><creatorcontrib>Intaek Kim</creatorcontrib><creatorcontrib>Vachtsevanos, G.</creatorcontrib><title>Overlapping object recognition: a paradigm for multiple sensor fusion</title><title>IEEE robotics &amp; automation magazine</title><addtitle>MRA</addtitle><description>Recognizing and identifying overlapping or occluded objects is a problem typically encountered in a manufacturing setting. The resultant image distortion tends to limit the applicability of current recognition systems in that case. The proposed recognition scheme involves the utility of an appropriate suite of complementary sensors and is based upon a systematic methodology that addresses the modeling problem through a polygonal approximation and the matching task between the sensor data and stored templates through a construction, called the intervertex matrix. An example is included to illustrate the simplicity and flexibility of the proposed approach.</description><subject>Application software</subject><subject>Image analysis</subject><subject>Image segmentation</subject><subject>Manufacturing</subject><subject>Military computing</subject><subject>Object recognition</subject><subject>Robotics and automation</subject><subject>Sensor fusion</subject><subject>Sensor systems</subject><subject>Shape</subject><issn>1070-9932</issn><issn>1558-223X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqF0MtLxDAQBvAgCq6rF4-eevIgVCePNqk3WdYHLOxFwVtJk8mSpS-TVvC_t0sXr56-GebHHD5CrincUwrFAwW4l0wxxk7IgmaZShnjn6fTDBLSouDsnFzEuAegQnG1IOvtN4Za971vd0lX7dEMSUDT7Vo_-K59THTS66Ct3zWJ60LSjPXg-xqTiG2cdjfGiV2SM6friFfHXJKP5_X76jXdbF_eVk-b1HAKQ6ozAERqhNNoq8JmTBiX6UzmwuTWVk45y2mOwuaMM6kYQK5AUKdVJRXnfElu57996L5GjEPZ-GiwrnWL3RhLVoCSBc3_h0pRJeTh490MTehiDOjKPvhGh5-SQnmodEoo50onfDNjj4h_8Hj8Bf4TcRw</recordid><startdate>19980901</startdate><enddate>19980901</enddate><creator>Intaek Kim</creator><creator>Vachtsevanos, G.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19980901</creationdate><title>Overlapping object recognition: a paradigm for multiple sensor fusion</title><author>Intaek Kim ; Vachtsevanos, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-a500ee1c4faedb9d524cf5a5764c6ddbf8fd316e4d62327820068041fa8b78333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Application software</topic><topic>Image analysis</topic><topic>Image segmentation</topic><topic>Manufacturing</topic><topic>Military computing</topic><topic>Object recognition</topic><topic>Robotics and automation</topic><topic>Sensor fusion</topic><topic>Sensor systems</topic><topic>Shape</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Intaek Kim</creatorcontrib><creatorcontrib>Vachtsevanos, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE robotics &amp; automation magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Intaek Kim</au><au>Vachtsevanos, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overlapping object recognition: a paradigm for multiple sensor fusion</atitle><jtitle>IEEE robotics &amp; automation magazine</jtitle><stitle>MRA</stitle><date>1998-09-01</date><risdate>1998</risdate><volume>5</volume><issue>3</issue><spage>37</spage><epage>44</epage><pages>37-44</pages><issn>1070-9932</issn><eissn>1558-223X</eissn><coden>IRAMEB</coden><abstract>Recognizing and identifying overlapping or occluded objects is a problem typically encountered in a manufacturing setting. The resultant image distortion tends to limit the applicability of current recognition systems in that case. The proposed recognition scheme involves the utility of an appropriate suite of complementary sensors and is based upon a systematic methodology that addresses the modeling problem through a polygonal approximation and the matching task between the sensor data and stored templates through a construction, called the intervertex matrix. An example is included to illustrate the simplicity and flexibility of the proposed approach.</abstract><pub>IEEE</pub><doi>10.1109/100.728222</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-9932
ispartof IEEE robotics & automation magazine, 1998-09, Vol.5 (3), p.37-44
issn 1070-9932
1558-223X
language eng
recordid cdi_crossref_primary_10_1109_100_728222
source IEEE Xplore (Online service)
subjects Application software
Image analysis
Image segmentation
Manufacturing
Military computing
Object recognition
Robotics and automation
Sensor fusion
Sensor systems
Shape
title Overlapping object recognition: a paradigm for multiple sensor fusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overlapping%20object%20recognition:%20a%20paradigm%20for%20multiple%20sensor%20fusion&rft.jtitle=IEEE%20robotics%20&%20automation%20magazine&rft.au=Intaek%20Kim&rft.date=1998-09-01&rft.volume=5&rft.issue=3&rft.spage=37&rft.epage=44&rft.pages=37-44&rft.issn=1070-9932&rft.eissn=1558-223X&rft.coden=IRAMEB&rft_id=info:doi/10.1109/100.728222&rft_dat=%3Cproquest_cross%3E29087916%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-a500ee1c4faedb9d524cf5a5764c6ddbf8fd316e4d62327820068041fa8b78333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28818473&rft_id=info:pmid/&rft_ieee_id=728222&rfr_iscdi=true