Loading…

A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem

We present a new approach to the recovering of dipole magnitudes in a distributed source model for magnetoencephalographic (MEG) and electroencephalographic (EEG) imaging. This method consists in introducing spatial and temporal a priori information as a cure to this ill-posed inverse problem. A non...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 1997-05, Vol.44 (5), p.374-385
Main Authors: Baillet, S., Garnero, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a new approach to the recovering of dipole magnitudes in a distributed source model for magnetoencephalographic (MEG) and electroencephalographic (EEG) imaging. This method consists in introducing spatial and temporal a priori information as a cure to this ill-posed inverse problem. A nonlinear spatial regularization scheme allows the preservation of dipole moment discontinuities between some a priori noncorrelated sources, for instance, when considering dipoles located on both sides of a sulcus. Moreover, we introduce temporal smoothness constraints on dipole magnitude evolution at time scales smaller than those of cognitive processes. These priors are easily integrated into a Bayesian formalism, yielding a maximum a posteriori (MAP) estimator of brain electrical activity. Results from EEG simulations of our method are presented and compared with those of classical quadratic regularization and a now popular generalized minimum-norm technique called low-resolution electromagnetic tomography (LORETA).
ISSN:0018-9294
1558-2531
DOI:10.1109/10.568913