Loading…

New binary covering codes obtained by simulated annealing

New binary covering codes of radius 1, obtained by simulated annealing, are presented. These constructions establish that K(9, 1)/spl les/62 and K(12, 1)/spl les/380. The article is concerned with finding upper bounds on K(n,R), the minimum cardinality of any binary code of length n and with coverin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 1996-01, Vol.42 (1), p.300-302
Main Author: Wille, L.T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c399t-462ad660ec1661e34eb32e17557884cd99ceef0f33131de8904779472fd7cb8f3
cites cdi_FETCH-LOGICAL-c399t-462ad660ec1661e34eb32e17557884cd99ceef0f33131de8904779472fd7cb8f3
container_end_page 302
container_issue 1
container_start_page 300
container_title IEEE transactions on information theory
container_volume 42
creator Wille, L.T.
description New binary covering codes of radius 1, obtained by simulated annealing, are presented. These constructions establish that K(9, 1)/spl les/62 and K(12, 1)/spl les/380. The article is concerned with finding upper bounds on K(n,R), the minimum cardinality of any binary code of length n and with covering radius R.
doi_str_mv 10.1109/18.481808
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_18_481808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>481808</ieee_id><sourcerecordid>28499707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-462ad660ec1661e34eb32e17557884cd99ceef0f33131de8904779472fd7cb8f3</originalsourceid><addsrcrecordid>eNpd0EtPwzAMAOAIgcQYHLhyqjggceiIm7RxjmgaD2mCC5yjNHVRpq4dTQvavyeoEwdOtuVPlm3GLoEvALi-A1xIBOR4xGaQ5yrVRS6P2YxzwFRLiafsLIRNLGUO2YzpF_pOSt_afp-47ot6337EpKKQdOVgfUtVUu6T4LdjY4dY2LYl20R1zk5q2wS6OMQ5e39YvS2f0vXr4_Pyfp06ofWQyiKzVVFwclAUQEJSKTICFXdDlK7S2hHVvBYCBFSEmkultFRZXSlXYi3m7Gaau-u7z5HCYLY-OGoa21I3BpOh1FpxFeH1P7jpxr6NuxnQOWpELiK6nZDruxB6qs2u99t4vQFufj9oAM30wWivJuuJ6M8dmj9ObWm1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195898803</pqid></control><display><type>article</type><title>New binary covering codes obtained by simulated annealing</title><source>IEEE Xplore (Online service)</source><creator>Wille, L.T.</creator><creatorcontrib>Wille, L.T.</creatorcontrib><description>New binary covering codes of radius 1, obtained by simulated annealing, are presented. These constructions establish that K(9, 1)/spl les/62 and K(12, 1)/spl les/380. The article is concerned with finding upper bounds on K(n,R), the minimum cardinality of any binary code of length n and with covering radius R.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.481808</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Binary codes ; Binary system ; Codes ; Cost function ; Design optimization ; Error correction codes ; Optimization methods ; Physics ; Simulated annealing ; Simulation ; Temperature ; Upper bound ; Writing</subject><ispartof>IEEE transactions on information theory, 1996-01, Vol.42 (1), p.300-302</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-462ad660ec1661e34eb32e17557884cd99ceef0f33131de8904779472fd7cb8f3</citedby><cites>FETCH-LOGICAL-c399t-462ad660ec1661e34eb32e17557884cd99ceef0f33131de8904779472fd7cb8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/481808$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wille, L.T.</creatorcontrib><title>New binary covering codes obtained by simulated annealing</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>New binary covering codes of radius 1, obtained by simulated annealing, are presented. These constructions establish that K(9, 1)/spl les/62 and K(12, 1)/spl les/380. The article is concerned with finding upper bounds on K(n,R), the minimum cardinality of any binary code of length n and with covering radius R.</description><subject>Binary codes</subject><subject>Binary system</subject><subject>Codes</subject><subject>Cost function</subject><subject>Design optimization</subject><subject>Error correction codes</subject><subject>Optimization methods</subject><subject>Physics</subject><subject>Simulated annealing</subject><subject>Simulation</subject><subject>Temperature</subject><subject>Upper bound</subject><subject>Writing</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpd0EtPwzAMAOAIgcQYHLhyqjggceiIm7RxjmgaD2mCC5yjNHVRpq4dTQvavyeoEwdOtuVPlm3GLoEvALi-A1xIBOR4xGaQ5yrVRS6P2YxzwFRLiafsLIRNLGUO2YzpF_pOSt_afp-47ot6337EpKKQdOVgfUtVUu6T4LdjY4dY2LYl20R1zk5q2wS6OMQ5e39YvS2f0vXr4_Pyfp06ofWQyiKzVVFwclAUQEJSKTICFXdDlK7S2hHVvBYCBFSEmkultFRZXSlXYi3m7Gaau-u7z5HCYLY-OGoa21I3BpOh1FpxFeH1P7jpxr6NuxnQOWpELiK6nZDruxB6qs2u99t4vQFufj9oAM30wWivJuuJ6M8dmj9ObWm1</recordid><startdate>199601</startdate><enddate>199601</enddate><creator>Wille, L.T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>199601</creationdate><title>New binary covering codes obtained by simulated annealing</title><author>Wille, L.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-462ad660ec1661e34eb32e17557884cd99ceef0f33131de8904779472fd7cb8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Binary codes</topic><topic>Binary system</topic><topic>Codes</topic><topic>Cost function</topic><topic>Design optimization</topic><topic>Error correction codes</topic><topic>Optimization methods</topic><topic>Physics</topic><topic>Simulated annealing</topic><topic>Simulation</topic><topic>Temperature</topic><topic>Upper bound</topic><topic>Writing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wille, L.T.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wille, L.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New binary covering codes obtained by simulated annealing</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1996-01</date><risdate>1996</risdate><volume>42</volume><issue>1</issue><spage>300</spage><epage>302</epage><pages>300-302</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>New binary covering codes of radius 1, obtained by simulated annealing, are presented. These constructions establish that K(9, 1)/spl les/62 and K(12, 1)/spl les/380. The article is concerned with finding upper bounds on K(n,R), the minimum cardinality of any binary code of length n and with covering radius R.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/18.481808</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 1996-01, Vol.42 (1), p.300-302
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_18_481808
source IEEE Xplore (Online service)
subjects Binary codes
Binary system
Codes
Cost function
Design optimization
Error correction codes
Optimization methods
Physics
Simulated annealing
Simulation
Temperature
Upper bound
Writing
title New binary covering codes obtained by simulated annealing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A25%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20binary%20covering%20codes%20obtained%20by%20simulated%20annealing&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Wille,%20L.T.&rft.date=1996-01&rft.volume=42&rft.issue=1&rft.spage=300&rft.epage=302&rft.pages=300-302&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.481808&rft_dat=%3Cproquest_cross%3E28499707%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-462ad660ec1661e34eb32e17557884cd99ceef0f33131de8904779472fd7cb8f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195898803&rft_id=info:pmid/&rft_ieee_id=481808&rfr_iscdi=true