Loading…
A gradient search interpretation of the super-exponential algorithm
This article reviews the super-exponential algorithm proposed by Shalvi and Weinstein (1993) for blind channel equalization. The principle of this algorithm-Hadamard exponentiation, projection over the set of attainable combined channel-equalizer impulse responses followed by a normalization-is show...
Saved in:
Published in: | IEEE transactions on information theory 2000-11, Vol.46 (7), p.2731-2734 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c370t-ebc1c57486376ed3baf7212a48d97b4f8ecfe23843a09217aac8e068bf04005d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c370t-ebc1c57486376ed3baf7212a48d97b4f8ecfe23843a09217aac8e068bf04005d3 |
container_end_page | 2734 |
container_issue | 7 |
container_start_page | 2731 |
container_title | IEEE transactions on information theory |
container_volume | 46 |
creator | Mboup, M. Regalia, P.A. |
description | This article reviews the super-exponential algorithm proposed by Shalvi and Weinstein (1993) for blind channel equalization. The principle of this algorithm-Hadamard exponentiation, projection over the set of attainable combined channel-equalizer impulse responses followed by a normalization-is shown to coincide with a gradient search of an extremum of a cost function. The cost function belongs to the family of functions given as the ratio of the standard l/sub 2p/ and l/sub 2/ sequence norms, where p>1. This family is very relevant in blind channel equalization, tracing back to Donoho's (1981) work on minimum entropy deconvolution and also underlying the Godard (1980) (or constant modulus) and the earlier Shalvi-Weinstein algorithms. Using this gradient search interpretation, which is more tractable for analytical study, we give a simple proof of convergence for the super-exponential algorithm. Finally, we show that the gradient step-size choice giving rise to the super-exponential algorithm is optimal. |
doi_str_mv | 10.1109/18.887889 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_18_887889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>887889</ieee_id><sourcerecordid>28310707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-ebc1c57486376ed3baf7212a48d97b4f8ecfe23843a09217aac8e068bf04005d3</originalsourceid><addsrcrecordid>eNp90UtLAzEQAOAgCtbqwaunxYPiYTWzSTaTYym-oOBFzyHdzraR7WZNtqL_3i0VBQ-ehpn5GGYYxk6BXwNwcwN4jagRzR4bgVI6N6WS-2zEOWBupMRDdpTS65BKBcWITSfZMrqFp7bPErlYrTLf9hS7SL3rfWizUGf9irK06Sjm9NGFdrDeNZlrliH6frU-Zge1axKdfMcxe7m7fZ4-5LOn-8fpZJZXQvM-p3kFldISS6FLWoi5q3UBhZO4MHoua6SqpkKgFI6bArRzFRIvcV5zyblaiDG72s1ducZ20a9d_LTBefswmdltjYOQimv1DoO93NkuhrcNpd6ufaqoaVxLYZOsAVmKQmkc5MW_skABXHM9wPM_8DVsYjtcbMEoUyBX5nfHKoaUItU_iwK32w9ZQLv70GDPdtYT0Y_7bn4BU5uJmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195928059</pqid></control><display><type>article</type><title>A gradient search interpretation of the super-exponential algorithm</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Mboup, M. ; Regalia, P.A.</creator><creatorcontrib>Mboup, M. ; Regalia, P.A.</creatorcontrib><description>This article reviews the super-exponential algorithm proposed by Shalvi and Weinstein (1993) for blind channel equalization. The principle of this algorithm-Hadamard exponentiation, projection over the set of attainable combined channel-equalizer impulse responses followed by a normalization-is shown to coincide with a gradient search of an extremum of a cost function. The cost function belongs to the family of functions given as the ratio of the standard l/sub 2p/ and l/sub 2/ sequence norms, where p>1. This family is very relevant in blind channel equalization, tracing back to Donoho's (1981) work on minimum entropy deconvolution and also underlying the Godard (1980) (or constant modulus) and the earlier Shalvi-Weinstein algorithms. Using this gradient search interpretation, which is more tractable for analytical study, we give a simple proof of convergence for the super-exponential algorithm. Finally, we show that the gradient step-size choice giving rise to the super-exponential algorithm is optimal.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.887889</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Blinds ; Channels ; Communication channels ; Convergence ; Cost function ; Engineering Sciences ; Entropy ; Equalization ; Search methods ; Searching ; Signal and Image processing</subject><ispartof>IEEE transactions on information theory, 2000-11, Vol.46 (7), p.2731-2734</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2000</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-ebc1c57486376ed3baf7212a48d97b4f8ecfe23843a09217aac8e068bf04005d3</citedby><cites>FETCH-LOGICAL-c370t-ebc1c57486376ed3baf7212a48d97b4f8ecfe23843a09217aac8e068bf04005d3</cites><orcidid>0000-0002-9212-7038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/887889$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01345075$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mboup, M.</creatorcontrib><creatorcontrib>Regalia, P.A.</creatorcontrib><title>A gradient search interpretation of the super-exponential algorithm</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>This article reviews the super-exponential algorithm proposed by Shalvi and Weinstein (1993) for blind channel equalization. The principle of this algorithm-Hadamard exponentiation, projection over the set of attainable combined channel-equalizer impulse responses followed by a normalization-is shown to coincide with a gradient search of an extremum of a cost function. The cost function belongs to the family of functions given as the ratio of the standard l/sub 2p/ and l/sub 2/ sequence norms, where p>1. This family is very relevant in blind channel equalization, tracing back to Donoho's (1981) work on minimum entropy deconvolution and also underlying the Godard (1980) (or constant modulus) and the earlier Shalvi-Weinstein algorithms. Using this gradient search interpretation, which is more tractable for analytical study, we give a simple proof of convergence for the super-exponential algorithm. Finally, we show that the gradient step-size choice giving rise to the super-exponential algorithm is optimal.</description><subject>Algorithms</subject><subject>Blinds</subject><subject>Channels</subject><subject>Communication channels</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Engineering Sciences</subject><subject>Entropy</subject><subject>Equalization</subject><subject>Search methods</subject><subject>Searching</subject><subject>Signal and Image processing</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp90UtLAzEQAOAgCtbqwaunxYPiYTWzSTaTYym-oOBFzyHdzraR7WZNtqL_3i0VBQ-ehpn5GGYYxk6BXwNwcwN4jagRzR4bgVI6N6WS-2zEOWBupMRDdpTS65BKBcWITSfZMrqFp7bPErlYrTLf9hS7SL3rfWizUGf9irK06Sjm9NGFdrDeNZlrliH6frU-Zge1axKdfMcxe7m7fZ4-5LOn-8fpZJZXQvM-p3kFldISS6FLWoi5q3UBhZO4MHoua6SqpkKgFI6bArRzFRIvcV5zyblaiDG72s1ducZ20a9d_LTBefswmdltjYOQimv1DoO93NkuhrcNpd6ufaqoaVxLYZOsAVmKQmkc5MW_skABXHM9wPM_8DVsYjtcbMEoUyBX5nfHKoaUItU_iwK32w9ZQLv70GDPdtYT0Y_7bn4BU5uJmg</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Mboup, M.</creator><creator>Regalia, P.A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9212-7038</orcidid></search><sort><creationdate>20001101</creationdate><title>A gradient search interpretation of the super-exponential algorithm</title><author>Mboup, M. ; Regalia, P.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-ebc1c57486376ed3baf7212a48d97b4f8ecfe23843a09217aac8e068bf04005d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Blinds</topic><topic>Channels</topic><topic>Communication channels</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Engineering Sciences</topic><topic>Entropy</topic><topic>Equalization</topic><topic>Search methods</topic><topic>Searching</topic><topic>Signal and Image processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mboup, M.</creatorcontrib><creatorcontrib>Regalia, P.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mboup, M.</au><au>Regalia, P.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A gradient search interpretation of the super-exponential algorithm</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2000-11-01</date><risdate>2000</risdate><volume>46</volume><issue>7</issue><spage>2731</spage><epage>2734</epage><pages>2731-2734</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>This article reviews the super-exponential algorithm proposed by Shalvi and Weinstein (1993) for blind channel equalization. The principle of this algorithm-Hadamard exponentiation, projection over the set of attainable combined channel-equalizer impulse responses followed by a normalization-is shown to coincide with a gradient search of an extremum of a cost function. The cost function belongs to the family of functions given as the ratio of the standard l/sub 2p/ and l/sub 2/ sequence norms, where p>1. This family is very relevant in blind channel equalization, tracing back to Donoho's (1981) work on minimum entropy deconvolution and also underlying the Godard (1980) (or constant modulus) and the earlier Shalvi-Weinstein algorithms. Using this gradient search interpretation, which is more tractable for analytical study, we give a simple proof of convergence for the super-exponential algorithm. Finally, we show that the gradient step-size choice giving rise to the super-exponential algorithm is optimal.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/18.887889</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9212-7038</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2000-11, Vol.46 (7), p.2731-2734 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_18_887889 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Blinds Channels Communication channels Convergence Cost function Engineering Sciences Entropy Equalization Search methods Searching Signal and Image processing |
title | A gradient search interpretation of the super-exponential algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20gradient%20search%20interpretation%20of%20the%20super-exponential%20algorithm&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Mboup,%20M.&rft.date=2000-11-01&rft.volume=46&rft.issue=7&rft.spage=2731&rft.epage=2734&rft.pages=2731-2734&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.887889&rft_dat=%3Cproquest_cross%3E28310707%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-ebc1c57486376ed3baf7212a48d97b4f8ecfe23843a09217aac8e068bf04005d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195928059&rft_id=info:pmid/&rft_ieee_id=887889&rfr_iscdi=true |