Loading…

A gradient search interpretation of the super-exponential algorithm

This article reviews the super-exponential algorithm proposed by Shalvi and Weinstein (1993) for blind channel equalization. The principle of this algorithm-Hadamard exponentiation, projection over the set of attainable combined channel-equalizer impulse responses followed by a normalization-is show...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2000-11, Vol.46 (7), p.2731-2734
Main Authors: Mboup, M., Regalia, P.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-ebc1c57486376ed3baf7212a48d97b4f8ecfe23843a09217aac8e068bf04005d3
cites cdi_FETCH-LOGICAL-c370t-ebc1c57486376ed3baf7212a48d97b4f8ecfe23843a09217aac8e068bf04005d3
container_end_page 2734
container_issue 7
container_start_page 2731
container_title IEEE transactions on information theory
container_volume 46
creator Mboup, M.
Regalia, P.A.
description This article reviews the super-exponential algorithm proposed by Shalvi and Weinstein (1993) for blind channel equalization. The principle of this algorithm-Hadamard exponentiation, projection over the set of attainable combined channel-equalizer impulse responses followed by a normalization-is shown to coincide with a gradient search of an extremum of a cost function. The cost function belongs to the family of functions given as the ratio of the standard l/sub 2p/ and l/sub 2/ sequence norms, where p>1. This family is very relevant in blind channel equalization, tracing back to Donoho's (1981) work on minimum entropy deconvolution and also underlying the Godard (1980) (or constant modulus) and the earlier Shalvi-Weinstein algorithms. Using this gradient search interpretation, which is more tractable for analytical study, we give a simple proof of convergence for the super-exponential algorithm. Finally, we show that the gradient step-size choice giving rise to the super-exponential algorithm is optimal.
doi_str_mv 10.1109/18.887889
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_18_887889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>887889</ieee_id><sourcerecordid>28310707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-ebc1c57486376ed3baf7212a48d97b4f8ecfe23843a09217aac8e068bf04005d3</originalsourceid><addsrcrecordid>eNp90UtLAzEQAOAgCtbqwaunxYPiYTWzSTaTYym-oOBFzyHdzraR7WZNtqL_3i0VBQ-ehpn5GGYYxk6BXwNwcwN4jagRzR4bgVI6N6WS-2zEOWBupMRDdpTS65BKBcWITSfZMrqFp7bPErlYrTLf9hS7SL3rfWizUGf9irK06Sjm9NGFdrDeNZlrliH6frU-Zge1axKdfMcxe7m7fZ4-5LOn-8fpZJZXQvM-p3kFldISS6FLWoi5q3UBhZO4MHoua6SqpkKgFI6bArRzFRIvcV5zyblaiDG72s1ducZ20a9d_LTBefswmdltjYOQimv1DoO93NkuhrcNpd6ufaqoaVxLYZOsAVmKQmkc5MW_skABXHM9wPM_8DVsYjtcbMEoUyBX5nfHKoaUItU_iwK32w9ZQLv70GDPdtYT0Y_7bn4BU5uJmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195928059</pqid></control><display><type>article</type><title>A gradient search interpretation of the super-exponential algorithm</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Mboup, M. ; Regalia, P.A.</creator><creatorcontrib>Mboup, M. ; Regalia, P.A.</creatorcontrib><description>This article reviews the super-exponential algorithm proposed by Shalvi and Weinstein (1993) for blind channel equalization. The principle of this algorithm-Hadamard exponentiation, projection over the set of attainable combined channel-equalizer impulse responses followed by a normalization-is shown to coincide with a gradient search of an extremum of a cost function. The cost function belongs to the family of functions given as the ratio of the standard l/sub 2p/ and l/sub 2/ sequence norms, where p&gt;1. This family is very relevant in blind channel equalization, tracing back to Donoho's (1981) work on minimum entropy deconvolution and also underlying the Godard (1980) (or constant modulus) and the earlier Shalvi-Weinstein algorithms. Using this gradient search interpretation, which is more tractable for analytical study, we give a simple proof of convergence for the super-exponential algorithm. Finally, we show that the gradient step-size choice giving rise to the super-exponential algorithm is optimal.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.887889</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Blinds ; Channels ; Communication channels ; Convergence ; Cost function ; Engineering Sciences ; Entropy ; Equalization ; Search methods ; Searching ; Signal and Image processing</subject><ispartof>IEEE transactions on information theory, 2000-11, Vol.46 (7), p.2731-2734</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2000</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-ebc1c57486376ed3baf7212a48d97b4f8ecfe23843a09217aac8e068bf04005d3</citedby><cites>FETCH-LOGICAL-c370t-ebc1c57486376ed3baf7212a48d97b4f8ecfe23843a09217aac8e068bf04005d3</cites><orcidid>0000-0002-9212-7038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/887889$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01345075$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mboup, M.</creatorcontrib><creatorcontrib>Regalia, P.A.</creatorcontrib><title>A gradient search interpretation of the super-exponential algorithm</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>This article reviews the super-exponential algorithm proposed by Shalvi and Weinstein (1993) for blind channel equalization. The principle of this algorithm-Hadamard exponentiation, projection over the set of attainable combined channel-equalizer impulse responses followed by a normalization-is shown to coincide with a gradient search of an extremum of a cost function. The cost function belongs to the family of functions given as the ratio of the standard l/sub 2p/ and l/sub 2/ sequence norms, where p&gt;1. This family is very relevant in blind channel equalization, tracing back to Donoho's (1981) work on minimum entropy deconvolution and also underlying the Godard (1980) (or constant modulus) and the earlier Shalvi-Weinstein algorithms. Using this gradient search interpretation, which is more tractable for analytical study, we give a simple proof of convergence for the super-exponential algorithm. Finally, we show that the gradient step-size choice giving rise to the super-exponential algorithm is optimal.</description><subject>Algorithms</subject><subject>Blinds</subject><subject>Channels</subject><subject>Communication channels</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Engineering Sciences</subject><subject>Entropy</subject><subject>Equalization</subject><subject>Search methods</subject><subject>Searching</subject><subject>Signal and Image processing</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp90UtLAzEQAOAgCtbqwaunxYPiYTWzSTaTYym-oOBFzyHdzraR7WZNtqL_3i0VBQ-ehpn5GGYYxk6BXwNwcwN4jagRzR4bgVI6N6WS-2zEOWBupMRDdpTS65BKBcWITSfZMrqFp7bPErlYrTLf9hS7SL3rfWizUGf9irK06Sjm9NGFdrDeNZlrliH6frU-Zge1axKdfMcxe7m7fZ4-5LOn-8fpZJZXQvM-p3kFldISS6FLWoi5q3UBhZO4MHoua6SqpkKgFI6bArRzFRIvcV5zyblaiDG72s1ducZ20a9d_LTBefswmdltjYOQimv1DoO93NkuhrcNpd6ufaqoaVxLYZOsAVmKQmkc5MW_skABXHM9wPM_8DVsYjtcbMEoUyBX5nfHKoaUItU_iwK32w9ZQLv70GDPdtYT0Y_7bn4BU5uJmg</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Mboup, M.</creator><creator>Regalia, P.A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9212-7038</orcidid></search><sort><creationdate>20001101</creationdate><title>A gradient search interpretation of the super-exponential algorithm</title><author>Mboup, M. ; Regalia, P.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-ebc1c57486376ed3baf7212a48d97b4f8ecfe23843a09217aac8e068bf04005d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Blinds</topic><topic>Channels</topic><topic>Communication channels</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Engineering Sciences</topic><topic>Entropy</topic><topic>Equalization</topic><topic>Search methods</topic><topic>Searching</topic><topic>Signal and Image processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mboup, M.</creatorcontrib><creatorcontrib>Regalia, P.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mboup, M.</au><au>Regalia, P.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A gradient search interpretation of the super-exponential algorithm</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2000-11-01</date><risdate>2000</risdate><volume>46</volume><issue>7</issue><spage>2731</spage><epage>2734</epage><pages>2731-2734</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>This article reviews the super-exponential algorithm proposed by Shalvi and Weinstein (1993) for blind channel equalization. The principle of this algorithm-Hadamard exponentiation, projection over the set of attainable combined channel-equalizer impulse responses followed by a normalization-is shown to coincide with a gradient search of an extremum of a cost function. The cost function belongs to the family of functions given as the ratio of the standard l/sub 2p/ and l/sub 2/ sequence norms, where p&gt;1. This family is very relevant in blind channel equalization, tracing back to Donoho's (1981) work on minimum entropy deconvolution and also underlying the Godard (1980) (or constant modulus) and the earlier Shalvi-Weinstein algorithms. Using this gradient search interpretation, which is more tractable for analytical study, we give a simple proof of convergence for the super-exponential algorithm. Finally, we show that the gradient step-size choice giving rise to the super-exponential algorithm is optimal.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/18.887889</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9212-7038</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2000-11, Vol.46 (7), p.2731-2734
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_18_887889
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Blinds
Channels
Communication channels
Convergence
Cost function
Engineering Sciences
Entropy
Equalization
Search methods
Searching
Signal and Image processing
title A gradient search interpretation of the super-exponential algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20gradient%20search%20interpretation%20of%20the%20super-exponential%20algorithm&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Mboup,%20M.&rft.date=2000-11-01&rft.volume=46&rft.issue=7&rft.spage=2731&rft.epage=2734&rft.pages=2731-2734&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.887889&rft_dat=%3Cproquest_cross%3E28310707%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-ebc1c57486376ed3baf7212a48d97b4f8ecfe23843a09217aac8e068bf04005d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195928059&rft_id=info:pmid/&rft_ieee_id=887889&rfr_iscdi=true