Loading…
Development of the spin-valve transistor
As the easiest experimental approach, GMR (giant magnetoresistance) is usually measured using the current in plane (CIP)-GMR. The spin-valve transistor has previously been presented as a spectroscopic tool to measure current perpendicular to the planes (CPP)-GMR. Hot electrons cross the magnetic mul...
Saved in:
Published in: | IEEE transactions on magnetics 1997-09, Vol.33 (5), p.3495-3499 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c343t-49cf649ec35d9b429ec3303e414fa72bbb0a9ec2c6901b11b497233ee82e04c23 |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-49cf649ec35d9b429ec3303e414fa72bbb0a9ec2c6901b11b497233ee82e04c23 |
container_end_page | 3499 |
container_issue | 5 |
container_start_page | 3495 |
container_title | IEEE transactions on magnetics |
container_volume | 33 |
creator | Monsma, D.J. Vlutters, R. Shimatsu, T. Keim, E.G. Mollema, R.H. Lodder, J.C. |
description | As the easiest experimental approach, GMR (giant magnetoresistance) is usually measured using the current in plane (CIP)-GMR. The spin-valve transistor has previously been presented as a spectroscopic tool to measure current perpendicular to the planes (CPP)-GMR. Hot electrons cross the magnetic multilayer base quasi-ballistically and the number reaching the collector depends exponentially on the perpendicular hot electron mean free path. Collector current changes of 390% at 77 K have already been measured. Apart from the substantial fundamental value, such properties may be useful for sensor applications. The electron energy range fills the gap between the Fermi surface transport in resistance measurements and other hot electron techniques such as spin polarised electron energy loss spectroscopy (SPEELS). The preparation problem of the spin-valve transistor and metal base transistor structures in general, the deposition of a device quality semiconductor on top of a metal, has now been tackled by bonding of two semiconductor substrates during vacuum deposition of a metal: an excellent bond is achieved at room temperature. TEM photos show a continuous buried metal film. Apart from preparation of various metal base transistor like structures, many other fields may benefit form this new technique. |
doi_str_mv | 10.1109/20.619478 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_20_619478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>619478</ieee_id><sourcerecordid>28887432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-49cf649ec35d9b429ec3303e414fa72bbb0a9ec2c6901b11b497233ee82e04c23</originalsourceid><addsrcrecordid>eNqN0D1PwzAQBmALgUQpDKxMmRAMKXf21YlH1PIlVWKB2XLMRQSlSbDTSPx7UqViZnrv49ENJ8QlwgIRzJ2EhUZDWX4kZmNiCqDNsZgBYJ4a0nQqzmL8GltaIszEzZoHrttuy02ftGXSf3ISu6pJB1cPnPTBNbGKfRvOxUnp6sgXh5yL98eHt9Vzunl9elndb1KvSPUpGV9qMuzV8sMUJPeVAsWEVLpMFkUBbpxJrw1ggViQyaRSzLlkIC_VXFxPd7vQfu849nZbRc917Rpud9HKPM8zUv-BMkOt9_B2gj60MQYubReqrQs_FsHun2Yl2Olpo72abMXMf-6w_AUlkGVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28271662</pqid></control><display><type>article</type><title>Development of the spin-valve transistor</title><source>IEEE Xplore (Online service)</source><creator>Monsma, D.J. ; Vlutters, R. ; Shimatsu, T. ; Keim, E.G. ; Mollema, R.H. ; Lodder, J.C.</creator><creatorcontrib>Monsma, D.J. ; Vlutters, R. ; Shimatsu, T. ; Keim, E.G. ; Mollema, R.H. ; Lodder, J.C.</creatorcontrib><description>As the easiest experimental approach, GMR (giant magnetoresistance) is usually measured using the current in plane (CIP)-GMR. The spin-valve transistor has previously been presented as a spectroscopic tool to measure current perpendicular to the planes (CPP)-GMR. Hot electrons cross the magnetic multilayer base quasi-ballistically and the number reaching the collector depends exponentially on the perpendicular hot electron mean free path. Collector current changes of 390% at 77 K have already been measured. Apart from the substantial fundamental value, such properties may be useful for sensor applications. The electron energy range fills the gap between the Fermi surface transport in resistance measurements and other hot electron techniques such as spin polarised electron energy loss spectroscopy (SPEELS). The preparation problem of the spin-valve transistor and metal base transistor structures in general, the deposition of a device quality semiconductor on top of a metal, has now been tackled by bonding of two semiconductor substrates during vacuum deposition of a metal: an excellent bond is achieved at room temperature. TEM photos show a continuous buried metal film. Apart from preparation of various metal base transistor like structures, many other fields may benefit form this new technique.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.619478</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bonding ; Current measurement ; Electrical resistance measurement ; Electrons ; Giant magnetoresistance ; Magnetic multilayers ; Magnetic sensors ; Polarization ; Spectroscopy ; Surface resistance</subject><ispartof>IEEE transactions on magnetics, 1997-09, Vol.33 (5), p.3495-3499</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-49cf649ec35d9b429ec3303e414fa72bbb0a9ec2c6901b11b497233ee82e04c23</citedby><cites>FETCH-LOGICAL-c343t-49cf649ec35d9b429ec3303e414fa72bbb0a9ec2c6901b11b497233ee82e04c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/619478$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Monsma, D.J.</creatorcontrib><creatorcontrib>Vlutters, R.</creatorcontrib><creatorcontrib>Shimatsu, T.</creatorcontrib><creatorcontrib>Keim, E.G.</creatorcontrib><creatorcontrib>Mollema, R.H.</creatorcontrib><creatorcontrib>Lodder, J.C.</creatorcontrib><title>Development of the spin-valve transistor</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>As the easiest experimental approach, GMR (giant magnetoresistance) is usually measured using the current in plane (CIP)-GMR. The spin-valve transistor has previously been presented as a spectroscopic tool to measure current perpendicular to the planes (CPP)-GMR. Hot electrons cross the magnetic multilayer base quasi-ballistically and the number reaching the collector depends exponentially on the perpendicular hot electron mean free path. Collector current changes of 390% at 77 K have already been measured. Apart from the substantial fundamental value, such properties may be useful for sensor applications. The electron energy range fills the gap between the Fermi surface transport in resistance measurements and other hot electron techniques such as spin polarised electron energy loss spectroscopy (SPEELS). The preparation problem of the spin-valve transistor and metal base transistor structures in general, the deposition of a device quality semiconductor on top of a metal, has now been tackled by bonding of two semiconductor substrates during vacuum deposition of a metal: an excellent bond is achieved at room temperature. TEM photos show a continuous buried metal film. Apart from preparation of various metal base transistor like structures, many other fields may benefit form this new technique.</description><subject>Bonding</subject><subject>Current measurement</subject><subject>Electrical resistance measurement</subject><subject>Electrons</subject><subject>Giant magnetoresistance</subject><subject>Magnetic multilayers</subject><subject>Magnetic sensors</subject><subject>Polarization</subject><subject>Spectroscopy</subject><subject>Surface resistance</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqN0D1PwzAQBmALgUQpDKxMmRAMKXf21YlH1PIlVWKB2XLMRQSlSbDTSPx7UqViZnrv49ENJ8QlwgIRzJ2EhUZDWX4kZmNiCqDNsZgBYJ4a0nQqzmL8GltaIszEzZoHrttuy02ftGXSf3ISu6pJB1cPnPTBNbGKfRvOxUnp6sgXh5yL98eHt9Vzunl9elndb1KvSPUpGV9qMuzV8sMUJPeVAsWEVLpMFkUBbpxJrw1ggViQyaRSzLlkIC_VXFxPd7vQfu849nZbRc917Rpud9HKPM8zUv-BMkOt9_B2gj60MQYubReqrQs_FsHun2Yl2Olpo72abMXMf-6w_AUlkGVw</recordid><startdate>19970901</startdate><enddate>19970901</enddate><creator>Monsma, D.J.</creator><creator>Vlutters, R.</creator><creator>Shimatsu, T.</creator><creator>Keim, E.G.</creator><creator>Mollema, R.H.</creator><creator>Lodder, J.C.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7U5</scope></search><sort><creationdate>19970901</creationdate><title>Development of the spin-valve transistor</title><author>Monsma, D.J. ; Vlutters, R. ; Shimatsu, T. ; Keim, E.G. ; Mollema, R.H. ; Lodder, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-49cf649ec35d9b429ec3303e414fa72bbb0a9ec2c6901b11b497233ee82e04c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Bonding</topic><topic>Current measurement</topic><topic>Electrical resistance measurement</topic><topic>Electrons</topic><topic>Giant magnetoresistance</topic><topic>Magnetic multilayers</topic><topic>Magnetic sensors</topic><topic>Polarization</topic><topic>Spectroscopy</topic><topic>Surface resistance</topic><toplevel>online_resources</toplevel><creatorcontrib>Monsma, D.J.</creatorcontrib><creatorcontrib>Vlutters, R.</creatorcontrib><creatorcontrib>Shimatsu, T.</creatorcontrib><creatorcontrib>Keim, E.G.</creatorcontrib><creatorcontrib>Mollema, R.H.</creatorcontrib><creatorcontrib>Lodder, J.C.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monsma, D.J.</au><au>Vlutters, R.</au><au>Shimatsu, T.</au><au>Keim, E.G.</au><au>Mollema, R.H.</au><au>Lodder, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of the spin-valve transistor</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1997-09-01</date><risdate>1997</risdate><volume>33</volume><issue>5</issue><spage>3495</spage><epage>3499</epage><pages>3495-3499</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>As the easiest experimental approach, GMR (giant magnetoresistance) is usually measured using the current in plane (CIP)-GMR. The spin-valve transistor has previously been presented as a spectroscopic tool to measure current perpendicular to the planes (CPP)-GMR. Hot electrons cross the magnetic multilayer base quasi-ballistically and the number reaching the collector depends exponentially on the perpendicular hot electron mean free path. Collector current changes of 390% at 77 K have already been measured. Apart from the substantial fundamental value, such properties may be useful for sensor applications. The electron energy range fills the gap between the Fermi surface transport in resistance measurements and other hot electron techniques such as spin polarised electron energy loss spectroscopy (SPEELS). The preparation problem of the spin-valve transistor and metal base transistor structures in general, the deposition of a device quality semiconductor on top of a metal, has now been tackled by bonding of two semiconductor substrates during vacuum deposition of a metal: an excellent bond is achieved at room temperature. TEM photos show a continuous buried metal film. Apart from preparation of various metal base transistor like structures, many other fields may benefit form this new technique.</abstract><pub>IEEE</pub><doi>10.1109/20.619478</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 1997-09, Vol.33 (5), p.3495-3499 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_crossref_primary_10_1109_20_619478 |
source | IEEE Xplore (Online service) |
subjects | Bonding Current measurement Electrical resistance measurement Electrons Giant magnetoresistance Magnetic multilayers Magnetic sensors Polarization Spectroscopy Surface resistance |
title | Development of the spin-valve transistor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20the%20spin-valve%20transistor&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Monsma,%20D.J.&rft.date=1997-09-01&rft.volume=33&rft.issue=5&rft.spage=3495&rft.epage=3499&rft.pages=3495-3499&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.619478&rft_dat=%3Cproquest_cross%3E28887432%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-49cf649ec35d9b429ec3303e414fa72bbb0a9ec2c6901b11b497233ee82e04c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28271662&rft_id=info:pmid/&rft_ieee_id=619478&rfr_iscdi=true |