Loading…

Development of the spin-valve transistor

As the easiest experimental approach, GMR (giant magnetoresistance) is usually measured using the current in plane (CIP)-GMR. The spin-valve transistor has previously been presented as a spectroscopic tool to measure current perpendicular to the planes (CPP)-GMR. Hot electrons cross the magnetic mul...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on magnetics 1997-09, Vol.33 (5), p.3495-3499
Main Authors: Monsma, D.J., Vlutters, R., Shimatsu, T., Keim, E.G., Mollema, R.H., Lodder, J.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-49cf649ec35d9b429ec3303e414fa72bbb0a9ec2c6901b11b497233ee82e04c23
cites cdi_FETCH-LOGICAL-c343t-49cf649ec35d9b429ec3303e414fa72bbb0a9ec2c6901b11b497233ee82e04c23
container_end_page 3499
container_issue 5
container_start_page 3495
container_title IEEE transactions on magnetics
container_volume 33
creator Monsma, D.J.
Vlutters, R.
Shimatsu, T.
Keim, E.G.
Mollema, R.H.
Lodder, J.C.
description As the easiest experimental approach, GMR (giant magnetoresistance) is usually measured using the current in plane (CIP)-GMR. The spin-valve transistor has previously been presented as a spectroscopic tool to measure current perpendicular to the planes (CPP)-GMR. Hot electrons cross the magnetic multilayer base quasi-ballistically and the number reaching the collector depends exponentially on the perpendicular hot electron mean free path. Collector current changes of 390% at 77 K have already been measured. Apart from the substantial fundamental value, such properties may be useful for sensor applications. The electron energy range fills the gap between the Fermi surface transport in resistance measurements and other hot electron techniques such as spin polarised electron energy loss spectroscopy (SPEELS). The preparation problem of the spin-valve transistor and metal base transistor structures in general, the deposition of a device quality semiconductor on top of a metal, has now been tackled by bonding of two semiconductor substrates during vacuum deposition of a metal: an excellent bond is achieved at room temperature. TEM photos show a continuous buried metal film. Apart from preparation of various metal base transistor like structures, many other fields may benefit form this new technique.
doi_str_mv 10.1109/20.619478
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_20_619478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>619478</ieee_id><sourcerecordid>28887432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-49cf649ec35d9b429ec3303e414fa72bbb0a9ec2c6901b11b497233ee82e04c23</originalsourceid><addsrcrecordid>eNqN0D1PwzAQBmALgUQpDKxMmRAMKXf21YlH1PIlVWKB2XLMRQSlSbDTSPx7UqViZnrv49ENJ8QlwgIRzJ2EhUZDWX4kZmNiCqDNsZgBYJ4a0nQqzmL8GltaIszEzZoHrttuy02ftGXSf3ISu6pJB1cPnPTBNbGKfRvOxUnp6sgXh5yL98eHt9Vzunl9elndb1KvSPUpGV9qMuzV8sMUJPeVAsWEVLpMFkUBbpxJrw1ggViQyaRSzLlkIC_VXFxPd7vQfu849nZbRc917Rpud9HKPM8zUv-BMkOt9_B2gj60MQYubReqrQs_FsHun2Yl2Olpo72abMXMf-6w_AUlkGVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28271662</pqid></control><display><type>article</type><title>Development of the spin-valve transistor</title><source>IEEE Xplore (Online service)</source><creator>Monsma, D.J. ; Vlutters, R. ; Shimatsu, T. ; Keim, E.G. ; Mollema, R.H. ; Lodder, J.C.</creator><creatorcontrib>Monsma, D.J. ; Vlutters, R. ; Shimatsu, T. ; Keim, E.G. ; Mollema, R.H. ; Lodder, J.C.</creatorcontrib><description>As the easiest experimental approach, GMR (giant magnetoresistance) is usually measured using the current in plane (CIP)-GMR. The spin-valve transistor has previously been presented as a spectroscopic tool to measure current perpendicular to the planes (CPP)-GMR. Hot electrons cross the magnetic multilayer base quasi-ballistically and the number reaching the collector depends exponentially on the perpendicular hot electron mean free path. Collector current changes of 390% at 77 K have already been measured. Apart from the substantial fundamental value, such properties may be useful for sensor applications. The electron energy range fills the gap between the Fermi surface transport in resistance measurements and other hot electron techniques such as spin polarised electron energy loss spectroscopy (SPEELS). The preparation problem of the spin-valve transistor and metal base transistor structures in general, the deposition of a device quality semiconductor on top of a metal, has now been tackled by bonding of two semiconductor substrates during vacuum deposition of a metal: an excellent bond is achieved at room temperature. TEM photos show a continuous buried metal film. Apart from preparation of various metal base transistor like structures, many other fields may benefit form this new technique.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.619478</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bonding ; Current measurement ; Electrical resistance measurement ; Electrons ; Giant magnetoresistance ; Magnetic multilayers ; Magnetic sensors ; Polarization ; Spectroscopy ; Surface resistance</subject><ispartof>IEEE transactions on magnetics, 1997-09, Vol.33 (5), p.3495-3499</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-49cf649ec35d9b429ec3303e414fa72bbb0a9ec2c6901b11b497233ee82e04c23</citedby><cites>FETCH-LOGICAL-c343t-49cf649ec35d9b429ec3303e414fa72bbb0a9ec2c6901b11b497233ee82e04c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/619478$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Monsma, D.J.</creatorcontrib><creatorcontrib>Vlutters, R.</creatorcontrib><creatorcontrib>Shimatsu, T.</creatorcontrib><creatorcontrib>Keim, E.G.</creatorcontrib><creatorcontrib>Mollema, R.H.</creatorcontrib><creatorcontrib>Lodder, J.C.</creatorcontrib><title>Development of the spin-valve transistor</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>As the easiest experimental approach, GMR (giant magnetoresistance) is usually measured using the current in plane (CIP)-GMR. The spin-valve transistor has previously been presented as a spectroscopic tool to measure current perpendicular to the planes (CPP)-GMR. Hot electrons cross the magnetic multilayer base quasi-ballistically and the number reaching the collector depends exponentially on the perpendicular hot electron mean free path. Collector current changes of 390% at 77 K have already been measured. Apart from the substantial fundamental value, such properties may be useful for sensor applications. The electron energy range fills the gap between the Fermi surface transport in resistance measurements and other hot electron techniques such as spin polarised electron energy loss spectroscopy (SPEELS). The preparation problem of the spin-valve transistor and metal base transistor structures in general, the deposition of a device quality semiconductor on top of a metal, has now been tackled by bonding of two semiconductor substrates during vacuum deposition of a metal: an excellent bond is achieved at room temperature. TEM photos show a continuous buried metal film. Apart from preparation of various metal base transistor like structures, many other fields may benefit form this new technique.</description><subject>Bonding</subject><subject>Current measurement</subject><subject>Electrical resistance measurement</subject><subject>Electrons</subject><subject>Giant magnetoresistance</subject><subject>Magnetic multilayers</subject><subject>Magnetic sensors</subject><subject>Polarization</subject><subject>Spectroscopy</subject><subject>Surface resistance</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqN0D1PwzAQBmALgUQpDKxMmRAMKXf21YlH1PIlVWKB2XLMRQSlSbDTSPx7UqViZnrv49ENJ8QlwgIRzJ2EhUZDWX4kZmNiCqDNsZgBYJ4a0nQqzmL8GltaIszEzZoHrttuy02ftGXSf3ISu6pJB1cPnPTBNbGKfRvOxUnp6sgXh5yL98eHt9Vzunl9elndb1KvSPUpGV9qMuzV8sMUJPeVAsWEVLpMFkUBbpxJrw1ggViQyaRSzLlkIC_VXFxPd7vQfu849nZbRc917Rpud9HKPM8zUv-BMkOt9_B2gj60MQYubReqrQs_FsHun2Yl2Olpo72abMXMf-6w_AUlkGVw</recordid><startdate>19970901</startdate><enddate>19970901</enddate><creator>Monsma, D.J.</creator><creator>Vlutters, R.</creator><creator>Shimatsu, T.</creator><creator>Keim, E.G.</creator><creator>Mollema, R.H.</creator><creator>Lodder, J.C.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7U5</scope></search><sort><creationdate>19970901</creationdate><title>Development of the spin-valve transistor</title><author>Monsma, D.J. ; Vlutters, R. ; Shimatsu, T. ; Keim, E.G. ; Mollema, R.H. ; Lodder, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-49cf649ec35d9b429ec3303e414fa72bbb0a9ec2c6901b11b497233ee82e04c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Bonding</topic><topic>Current measurement</topic><topic>Electrical resistance measurement</topic><topic>Electrons</topic><topic>Giant magnetoresistance</topic><topic>Magnetic multilayers</topic><topic>Magnetic sensors</topic><topic>Polarization</topic><topic>Spectroscopy</topic><topic>Surface resistance</topic><toplevel>online_resources</toplevel><creatorcontrib>Monsma, D.J.</creatorcontrib><creatorcontrib>Vlutters, R.</creatorcontrib><creatorcontrib>Shimatsu, T.</creatorcontrib><creatorcontrib>Keim, E.G.</creatorcontrib><creatorcontrib>Mollema, R.H.</creatorcontrib><creatorcontrib>Lodder, J.C.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monsma, D.J.</au><au>Vlutters, R.</au><au>Shimatsu, T.</au><au>Keim, E.G.</au><au>Mollema, R.H.</au><au>Lodder, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of the spin-valve transistor</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1997-09-01</date><risdate>1997</risdate><volume>33</volume><issue>5</issue><spage>3495</spage><epage>3499</epage><pages>3495-3499</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>As the easiest experimental approach, GMR (giant magnetoresistance) is usually measured using the current in plane (CIP)-GMR. The spin-valve transistor has previously been presented as a spectroscopic tool to measure current perpendicular to the planes (CPP)-GMR. Hot electrons cross the magnetic multilayer base quasi-ballistically and the number reaching the collector depends exponentially on the perpendicular hot electron mean free path. Collector current changes of 390% at 77 K have already been measured. Apart from the substantial fundamental value, such properties may be useful for sensor applications. The electron energy range fills the gap between the Fermi surface transport in resistance measurements and other hot electron techniques such as spin polarised electron energy loss spectroscopy (SPEELS). The preparation problem of the spin-valve transistor and metal base transistor structures in general, the deposition of a device quality semiconductor on top of a metal, has now been tackled by bonding of two semiconductor substrates during vacuum deposition of a metal: an excellent bond is achieved at room temperature. TEM photos show a continuous buried metal film. Apart from preparation of various metal base transistor like structures, many other fields may benefit form this new technique.</abstract><pub>IEEE</pub><doi>10.1109/20.619478</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 1997-09, Vol.33 (5), p.3495-3499
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_20_619478
source IEEE Xplore (Online service)
subjects Bonding
Current measurement
Electrical resistance measurement
Electrons
Giant magnetoresistance
Magnetic multilayers
Magnetic sensors
Polarization
Spectroscopy
Surface resistance
title Development of the spin-valve transistor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20the%20spin-valve%20transistor&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Monsma,%20D.J.&rft.date=1997-09-01&rft.volume=33&rft.issue=5&rft.spage=3495&rft.epage=3499&rft.pages=3495-3499&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.619478&rft_dat=%3Cproquest_cross%3E28887432%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-49cf649ec35d9b429ec3303e414fa72bbb0a9ec2c6901b11b497233ee82e04c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28271662&rft_id=info:pmid/&rft_ieee_id=619478&rfr_iscdi=true