Loading…
Neuromodeling of microwave circuits exploiting space-mapping technology
For the first time, we present modeling of microwave circuits using artificial neural networks (ANN's) based on space-mapping (SM) technology, SM-based neuromodels decrease the cost of training, improve generalization ability, and reduce the complexity of the ANN topology with respect to the cl...
Saved in:
Published in: | IEEE transactions on microwave theory and techniques 1999-12, Vol.47 (12), p.2417-2427 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For the first time, we present modeling of microwave circuits using artificial neural networks (ANN's) based on space-mapping (SM) technology, SM-based neuromodels decrease the cost of training, improve generalization ability, and reduce the complexity of the ANN topology with respect to the classical neuromodeling approach. Five creative techniques are proposed to generate SM-based neuromodels. A frequency-sensitive neuromapping is applied to overcome the limitations of empirical models developed under quasi-static conditions, Huber optimization is used to train the ANN's. We contrast SM-based neuromodeling with the classical neuromodeling approach as well as with other state-of-the-art neuromodeling techniques. The SM-based neuromodeling techniques are illustrated by a microstrip bend and a high-temperature superconducting filter. |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/22.808989 |