Loading…

Proton-induced transient effects in a metal-semiconductor-metal (MSM) photodetector for optical-based data transfer

We present a study of proton transient effects in metal-semiconductor-metal (MSM) photodetectors, which demonstrates their inherent advantage for minimizing Single Event Effects (SEEs) in proton environments. Upset mechanisms are characterized for 830 nm GaAs and 1300 nm InGaAs detectors. Only proto...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nuclear science 1998-12, Vol.45 (6), p.2842-2848
Main Authors: Marshall, C.J., Marshall, P.W., Carts, M.A., Reed, R.A., LaBel, K.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a study of proton transient effects in metal-semiconductor-metal (MSM) photodetectors, which demonstrates their inherent advantage for minimizing Single Event Effects (SEEs) in proton environments. Upset mechanisms are characterized for 830 nm GaAs and 1300 nm InGaAs detectors. Only protons incident at grazing angles are likely to cause bit errors by direct ionization. The MSM technology appears to be a more robust to single bit errors than thicker 1300 nm p-i-n diode structures which we have previously shown to be susceptible to errors from direct ionization events at all angles, and also at relatively high optical powers. For a given receiver, the relative contributions of direct ionization and nuclear reaction upset mechanisms at a specific data rate and optical power are determined by the geometry of the charge collection volume of the detector. We show that state-of-the-art p-i-n detectors can also display a reduced sensitivity to direct ionization by incident protons except at grazing angles.
ISSN:0018-9499
1558-1578
DOI:10.1109/23.736537