Loading…
The stochastic knapsack problem
The problem of packing a knapsack of integer volume F with objects from K different classes to maximize profit is studied. Optimization is carried out over the class of coordinate convex policies. For the case of K=2, it is shown for a wide range of parameters that the optimal control is of the thre...
Saved in:
Published in: | IEEE transactions on communications 1989-07, Vol.37 (7), p.740-747 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c335t-49e6502216fe06b454f270baebfd61b8540533ea2f7c2902972b051dca878b133 |
---|---|
cites | cdi_FETCH-LOGICAL-c335t-49e6502216fe06b454f270baebfd61b8540533ea2f7c2902972b051dca878b133 |
container_end_page | 747 |
container_issue | 7 |
container_start_page | 740 |
container_title | IEEE transactions on communications |
container_volume | 37 |
creator | Ross, K.W. Tsang, D.H.K. |
description | The problem of packing a knapsack of integer volume F with objects from K different classes to maximize profit is studied. Optimization is carried out over the class of coordinate convex policies. For the case of K=2, it is shown for a wide range of parameters that the optimal control is of the threshold type. In the case of Poisson arrivals and of knapsack and object volumes being integer multiples of each other, it is shown that the optimal policy is always of the double-threshold type. An O(F) algorithm to determine the revenue of threshold policies is also given. For the general case of K classes, the problem of the optimal static control where for each class a portion of the knapsack is dedicated is considered. An efficient finite-stage dynamic programming algorithm for locating the optimal static control is presented. Furthermore, variants of the optimal static control which allow some sharing among classes are also discussed.< > |
doi_str_mv | 10.1109/26.31166 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_26_31166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>31166</ieee_id><sourcerecordid>25519715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-49e6502216fe06b454f270baebfd61b8540533ea2f7c2902972b051dca878b133</originalsourceid><addsrcrecordid>eNqF0L1PwzAQBXALgUQpSKxMdAGxpJztnD9GVPElVWIps2W7ZzU0bUqcDvz3tKSCkemG--k96TF2yWHMOdh7ocaSc6WO2IAjmgIM6mM2ALBQKK3NKTvL-QMASpBywK5nCxrlrokLn7sqjpZrv8k-Lkebtgk1rc7ZSfJ1povDHbL3p8fZ5KWYvj2_Th6mRZQSu6K0pBCE4CoRqFBimYSG4CmkueLBYAkoJXmRdBQWhNUiAPJ59EabwKUcsts-d9f7uaXcuVWVI9W1X1OzzU4YpQwq9T9E5FZz3MG7Hsa2ybml5DZttfLtl-Pg9lM5odzPVDt6c8j0Ofo6tX4dq_znLRpu5d5d9a4iot93n_ENeNltZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25519715</pqid></control><display><type>article</type><title>The stochastic knapsack problem</title><source>IEEE Xplore (Online service)</source><creator>Ross, K.W. ; Tsang, D.H.K.</creator><creatorcontrib>Ross, K.W. ; Tsang, D.H.K.</creatorcontrib><description>The problem of packing a knapsack of integer volume F with objects from K different classes to maximize profit is studied. Optimization is carried out over the class of coordinate convex policies. For the case of K=2, it is shown for a wide range of parameters that the optimal control is of the threshold type. In the case of Poisson arrivals and of knapsack and object volumes being integer multiples of each other, it is shown that the optimal policy is always of the double-threshold type. An O(F) algorithm to determine the revenue of threshold policies is also given. For the general case of K classes, the problem of the optimal static control where for each class a portion of the knapsack is dedicated is considered. An efficient finite-stage dynamic programming algorithm for locating the optimal static control is presented. Furthermore, variants of the optimal static control which allow some sharing among classes are also discussed.< ></description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/26.31166</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bandwidth ; Communication switching ; Communications Society ; Dynamic programming ; Exact sciences and technology ; Heuristic algorithms ; Optimal control ; Stochastic processes ; Systems, networks and services of telecommunications ; Telecommunication traffic ; Telecommunications ; Telecommunications and information theory ; Teletraffic ; Traffic control</subject><ispartof>IEEE transactions on communications, 1989-07, Vol.37 (7), p.740-747</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-49e6502216fe06b454f270baebfd61b8540533ea2f7c2902972b051dca878b133</citedby><cites>FETCH-LOGICAL-c335t-49e6502216fe06b454f270baebfd61b8540533ea2f7c2902972b051dca878b133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/31166$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19581936$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ross, K.W.</creatorcontrib><creatorcontrib>Tsang, D.H.K.</creatorcontrib><title>The stochastic knapsack problem</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>The problem of packing a knapsack of integer volume F with objects from K different classes to maximize profit is studied. Optimization is carried out over the class of coordinate convex policies. For the case of K=2, it is shown for a wide range of parameters that the optimal control is of the threshold type. In the case of Poisson arrivals and of knapsack and object volumes being integer multiples of each other, it is shown that the optimal policy is always of the double-threshold type. An O(F) algorithm to determine the revenue of threshold policies is also given. For the general case of K classes, the problem of the optimal static control where for each class a portion of the knapsack is dedicated is considered. An efficient finite-stage dynamic programming algorithm for locating the optimal static control is presented. Furthermore, variants of the optimal static control which allow some sharing among classes are also discussed.< ></description><subject>Applied sciences</subject><subject>Bandwidth</subject><subject>Communication switching</subject><subject>Communications Society</subject><subject>Dynamic programming</subject><subject>Exact sciences and technology</subject><subject>Heuristic algorithms</subject><subject>Optimal control</subject><subject>Stochastic processes</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunication traffic</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teletraffic</subject><subject>Traffic control</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqF0L1PwzAQBXALgUQpSKxMdAGxpJztnD9GVPElVWIps2W7ZzU0bUqcDvz3tKSCkemG--k96TF2yWHMOdh7ocaSc6WO2IAjmgIM6mM2ALBQKK3NKTvL-QMASpBywK5nCxrlrokLn7sqjpZrv8k-Lkebtgk1rc7ZSfJ1povDHbL3p8fZ5KWYvj2_Th6mRZQSu6K0pBCE4CoRqFBimYSG4CmkueLBYAkoJXmRdBQWhNUiAPJ59EabwKUcsts-d9f7uaXcuVWVI9W1X1OzzU4YpQwq9T9E5FZz3MG7Hsa2ybml5DZttfLtl-Pg9lM5odzPVDt6c8j0Ofo6tX4dq_znLRpu5d5d9a4iot93n_ENeNltZw</recordid><startdate>19890701</startdate><enddate>19890701</enddate><creator>Ross, K.W.</creator><creator>Tsang, D.H.K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope></search><sort><creationdate>19890701</creationdate><title>The stochastic knapsack problem</title><author>Ross, K.W. ; Tsang, D.H.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-49e6502216fe06b454f270baebfd61b8540533ea2f7c2902972b051dca878b133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Applied sciences</topic><topic>Bandwidth</topic><topic>Communication switching</topic><topic>Communications Society</topic><topic>Dynamic programming</topic><topic>Exact sciences and technology</topic><topic>Heuristic algorithms</topic><topic>Optimal control</topic><topic>Stochastic processes</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunication traffic</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teletraffic</topic><topic>Traffic control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, K.W.</creatorcontrib><creatorcontrib>Tsang, D.H.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics & Communications Abstracts</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross, K.W.</au><au>Tsang, D.H.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stochastic knapsack problem</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>1989-07-01</date><risdate>1989</risdate><volume>37</volume><issue>7</issue><spage>740</spage><epage>747</epage><pages>740-747</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>The problem of packing a knapsack of integer volume F with objects from K different classes to maximize profit is studied. Optimization is carried out over the class of coordinate convex policies. For the case of K=2, it is shown for a wide range of parameters that the optimal control is of the threshold type. In the case of Poisson arrivals and of knapsack and object volumes being integer multiples of each other, it is shown that the optimal policy is always of the double-threshold type. An O(F) algorithm to determine the revenue of threshold policies is also given. For the general case of K classes, the problem of the optimal static control where for each class a portion of the knapsack is dedicated is considered. An efficient finite-stage dynamic programming algorithm for locating the optimal static control is presented. Furthermore, variants of the optimal static control which allow some sharing among classes are also discussed.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/26.31166</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 1989-07, Vol.37 (7), p.740-747 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_crossref_primary_10_1109_26_31166 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Bandwidth Communication switching Communications Society Dynamic programming Exact sciences and technology Heuristic algorithms Optimal control Stochastic processes Systems, networks and services of telecommunications Telecommunication traffic Telecommunications Telecommunications and information theory Teletraffic Traffic control |
title | The stochastic knapsack problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stochastic%20knapsack%20problem&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Ross,%20K.W.&rft.date=1989-07-01&rft.volume=37&rft.issue=7&rft.spage=740&rft.epage=747&rft.pages=740-747&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/26.31166&rft_dat=%3Cproquest_cross%3E25519715%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-49e6502216fe06b454f270baebfd61b8540533ea2f7c2902972b051dca878b133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25519715&rft_id=info:pmid/&rft_ieee_id=31166&rfr_iscdi=true |