Loading…

MISO CDMA transmission with simplified receiver for wireless communication handsets

The next-generation wireless personal and mobile communication systems are expected to accommodate not only high-quality voice services, but also a broad range of other multirate services. Of the various multiaccess techniques, wide-band code-division multiple access (CDMA) has been regarded as an i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2001-05, Vol.49 (5), p.888-898
Main Authors: Ruly Lai-U Choi, Letaief, K.B., Murch, R.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The next-generation wireless personal and mobile communication systems are expected to accommodate not only high-quality voice services, but also a broad range of other multirate services. Of the various multiaccess techniques, wide-band code-division multiple access (CDMA) has been regarded as an important part of the third-generation wireless communication systems because of its high frequency utilization efficiency and suitability for handling multimedia and multirate services. In this paper, we consider a system with a simplified receiver structure for direct-sequence CDMA (DS/CDMA) wireless communication handsets, in which improved performance is demonstrated when compared to a conventional DS/CDMA system with a RAKE receiver at the mobile station. We arrive at this system by finding the optimal solution to a general multiple-input single-output (MISO) DS/CDMA smart antenna system. We find that this solution reduces to a pre-RAKE with space transmit diversity system under the assumption that a simple one-finger matched filter is used at the receiver. This system combines the advantages of pre-RAKE diversity and transmit antenna diversity. It is shown that significant system performance and capacity improvements are possible. The numerical results also reveal that this system is not too sensitive to channel estimation errors.
ISSN:0090-6778
1558-0857
DOI:10.1109/26.923812