Loading…
Receiver designs and channel characterization for multi-spot high-bit-rate wireless infrared communications
This paper addresses one of the most promising candidates for high-speed in-house wireless communications, namely, the multi-spot diffusing configuration (MSDC). Since it uses the optical infrared medium for data transmission, it has the inherent potential for achieving very high capacities. The cha...
Saved in:
Published in: | IEEE transactions on communications 2001-12, Vol.49 (12), p.2145-2153 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper addresses one of the most promising candidates for high-speed in-house wireless communications, namely, the multi-spot diffusing configuration (MSDC). Since it uses the optical infrared medium for data transmission, it has the inherent potential for achieving very high capacities. The channel characteristics in MSDC are simulated and the causes for channel distortion are analyzed. Then, conditions for creation of a virtually ideal channel are derived. It is shown that the 3-dB channel bandwidth can be extended up to beyond 2 GHz. This bandwidth comes at the cost of a poor power efficiency. In order to compensate for that, a novel receiver optical front-end design is proposed and its performance is analyzed. Taking advantage of the unique properties of the holographic optical elements, the conventional optical front-end, consisting of a concentrator and a filter, is replaced by a single holographic curved mirror. The utilization of such a holographic optical element improves the signal-to-shot noise ratio by up to 18.5 dB. |
---|---|
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/26.974261 |