Loading…
A physical model of the low-current-density vacuum arc
A one-dimensional (1-D) physical model of the low-current-density steady-state vacuum arc is proposed. The model is based on the continuity equations for ions and electrons and the energy balance for the discharge system; the electric potential distribution in the discharge gap is assumed to be nonm...
Saved in:
Published in: | IEEE transactions on plasma science 1995-12, Vol.23 (6), p.884-892 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A one-dimensional (1-D) physical model of the low-current-density steady-state vacuum arc is proposed. The model is based on the continuity equations for ions and electrons and the energy balance for the discharge system; the electric potential distribution in the discharge gap is assumed to be nonmonotonic. It is supposed that the ion current at the cathode is generated within the cathode potential fall region due to the ionization of the evaporated atoms by the plasma thermal electrons having Boltzmann's energy distribution. The model offers a satisfactory explanation for the principal regularities of a hot-cathode vacuum arc with diffuse attachment of the current. The applicability of the model proposed to the explanation of some processes occurring in a vacuum arc, such as the flow of fast ions toward the anode, the current cutoffs and voltage bursts, and the backward motion of a cathode spot in a transverse magnetic field is discussed. |
---|---|
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/27.476470 |