Loading…

LMS iterative algorithms applied to the computation of TV ghost canceller parameters

Three iterative forms of the LMS learning algorithm were tested for the calculation of the coefficients of FIR filters used as TV ghost cancellers. These computational forms are: the stochastic gradient fixed-step (SGLMS) and a variable step (SLS-CD), algorithms, as well as the recursive modified Gr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on consumer electronics 1994-08, Vol.40 (3), p.662-670
Main Authors: Yong, A., Markhauser, C.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c192t-df89e82328526c24af039e31e0af3adee12827f6f13e86d566fcb0c6624b0d2f3
cites cdi_FETCH-LOGICAL-c192t-df89e82328526c24af039e31e0af3adee12827f6f13e86d566fcb0c6624b0d2f3
container_end_page 670
container_issue 3
container_start_page 662
container_title IEEE transactions on consumer electronics
container_volume 40
creator Yong, A.
Markhauser, C.P.
description Three iterative forms of the LMS learning algorithm were tested for the calculation of the coefficients of FIR filters used as TV ghost cancellers. These computational forms are: the stochastic gradient fixed-step (SGLMS) and a variable step (SLS-CD), algorithms, as well as the recursive modified Gram-Schmidt RMGS algorithm. Because of the iterative nature of the selected algorithms, they are very convenient to be used in on-line LTF filter coefficient adaptations. This makes it possible to compute the coefficient values of the ghost canceller, when the sampling of the signal generates a huge amount of data, which is very hard to be handled with a PC. The aforementioned algorithms are written in a very powerful and flexible matrix oriented software, and all the tests were performed using a very flexible TV system simulator. During the tests, fast convergence of the ghost canceller coefficients to the theoretical values have been observed.< >
doi_str_mv 10.1109/30.320855
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_30_320855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>320855</ieee_id><sourcerecordid>28360735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c192t-df89e82328526c24af039e31e0af3adee12827f6f13e86d566fcb0c6624b0d2f3</originalsourceid><addsrcrecordid>eNo90L1PwzAQBXALgUQpDKxMnpAYAmc7dp0RVXxJRQwUVst1zm1QUgfbReK_J1Uqphvup6enR8glg1vGoLoTcCs4aCmPyIRJqYuS8dkxmQBUuhCgxCk5S-kLgJWS6wlZLl7faZMx2tz8ILXtOsQmb7pEbd-3DdY0B5o3SF3o-l0eVNjS4Onyk643IWXq7NZh22KkvY22wyEqnZMTb9uEF4c7JR-PD8v5c7F4e3qZ3y8Kxyqei9rrCjUXXEuuHC-tB1GhYAjWC1sjMq75zCvPBGpVS6W8W4FTipcrqLkXU3I95vYxfO8wZdM1ad_GbjHskuFaKJgJOcCbEboYUoroTR-bzsZfw8DsdzMCzLjbYK9G2yDivzs8_wBD72h-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28360735</pqid></control><display><type>article</type><title>LMS iterative algorithms applied to the computation of TV ghost canceller parameters</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yong, A. ; Markhauser, C.P.</creator><creatorcontrib>Yong, A. ; Markhauser, C.P.</creatorcontrib><description>Three iterative forms of the LMS learning algorithm were tested for the calculation of the coefficients of FIR filters used as TV ghost cancellers. These computational forms are: the stochastic gradient fixed-step (SGLMS) and a variable step (SLS-CD), algorithms, as well as the recursive modified Gram-Schmidt RMGS algorithm. Because of the iterative nature of the selected algorithms, they are very convenient to be used in on-line LTF filter coefficient adaptations. This makes it possible to compute the coefficient values of the ghost canceller, when the sampling of the signal generates a huge amount of data, which is very hard to be handled with a PC. The aforementioned algorithms are written in a very powerful and flexible matrix oriented software, and all the tests were performed using a very flexible TV system simulator. During the tests, fast convergence of the ghost canceller coefficients to the theoretical values have been observed.&lt; &gt;</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/30.320855</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>IEEE</publisher><subject>Finite impulse response filter ; Iterative algorithms ; Least squares approximation ; Power generation ; Sampling methods ; Signal generators ; Software algorithms ; Stochastic processes ; Testing</subject><ispartof>IEEE transactions on consumer electronics, 1994-08, Vol.40 (3), p.662-670</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c192t-df89e82328526c24af039e31e0af3adee12827f6f13e86d566fcb0c6624b0d2f3</citedby><cites>FETCH-LOGICAL-c192t-df89e82328526c24af039e31e0af3adee12827f6f13e86d566fcb0c6624b0d2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/320855$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yong, A.</creatorcontrib><creatorcontrib>Markhauser, C.P.</creatorcontrib><title>LMS iterative algorithms applied to the computation of TV ghost canceller parameters</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>Three iterative forms of the LMS learning algorithm were tested for the calculation of the coefficients of FIR filters used as TV ghost cancellers. These computational forms are: the stochastic gradient fixed-step (SGLMS) and a variable step (SLS-CD), algorithms, as well as the recursive modified Gram-Schmidt RMGS algorithm. Because of the iterative nature of the selected algorithms, they are very convenient to be used in on-line LTF filter coefficient adaptations. This makes it possible to compute the coefficient values of the ghost canceller, when the sampling of the signal generates a huge amount of data, which is very hard to be handled with a PC. The aforementioned algorithms are written in a very powerful and flexible matrix oriented software, and all the tests were performed using a very flexible TV system simulator. During the tests, fast convergence of the ghost canceller coefficients to the theoretical values have been observed.&lt; &gt;</description><subject>Finite impulse response filter</subject><subject>Iterative algorithms</subject><subject>Least squares approximation</subject><subject>Power generation</subject><subject>Sampling methods</subject><subject>Signal generators</subject><subject>Software algorithms</subject><subject>Stochastic processes</subject><subject>Testing</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo90L1PwzAQBXALgUQpDKxMnpAYAmc7dp0RVXxJRQwUVst1zm1QUgfbReK_J1Uqphvup6enR8glg1vGoLoTcCs4aCmPyIRJqYuS8dkxmQBUuhCgxCk5S-kLgJWS6wlZLl7faZMx2tz8ILXtOsQmb7pEbd-3DdY0B5o3SF3o-l0eVNjS4Onyk643IWXq7NZh22KkvY22wyEqnZMTb9uEF4c7JR-PD8v5c7F4e3qZ3y8Kxyqei9rrCjUXXEuuHC-tB1GhYAjWC1sjMq75zCvPBGpVS6W8W4FTipcrqLkXU3I95vYxfO8wZdM1ad_GbjHskuFaKJgJOcCbEboYUoroTR-bzsZfw8DsdzMCzLjbYK9G2yDivzs8_wBD72h-</recordid><startdate>19940801</startdate><enddate>19940801</enddate><creator>Yong, A.</creator><creator>Markhauser, C.P.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>19940801</creationdate><title>LMS iterative algorithms applied to the computation of TV ghost canceller parameters</title><author>Yong, A. ; Markhauser, C.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c192t-df89e82328526c24af039e31e0af3adee12827f6f13e86d566fcb0c6624b0d2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Finite impulse response filter</topic><topic>Iterative algorithms</topic><topic>Least squares approximation</topic><topic>Power generation</topic><topic>Sampling methods</topic><topic>Signal generators</topic><topic>Software algorithms</topic><topic>Stochastic processes</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yong, A.</creatorcontrib><creatorcontrib>Markhauser, C.P.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yong, A.</au><au>Markhauser, C.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LMS iterative algorithms applied to the computation of TV ghost canceller parameters</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>1994-08-01</date><risdate>1994</risdate><volume>40</volume><issue>3</issue><spage>662</spage><epage>670</epage><pages>662-670</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>Three iterative forms of the LMS learning algorithm were tested for the calculation of the coefficients of FIR filters used as TV ghost cancellers. These computational forms are: the stochastic gradient fixed-step (SGLMS) and a variable step (SLS-CD), algorithms, as well as the recursive modified Gram-Schmidt RMGS algorithm. Because of the iterative nature of the selected algorithms, they are very convenient to be used in on-line LTF filter coefficient adaptations. This makes it possible to compute the coefficient values of the ghost canceller, when the sampling of the signal generates a huge amount of data, which is very hard to be handled with a PC. The aforementioned algorithms are written in a very powerful and flexible matrix oriented software, and all the tests were performed using a very flexible TV system simulator. During the tests, fast convergence of the ghost canceller coefficients to the theoretical values have been observed.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/30.320855</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-3063
ispartof IEEE transactions on consumer electronics, 1994-08, Vol.40 (3), p.662-670
issn 0098-3063
1558-4127
language eng
recordid cdi_crossref_primary_10_1109_30_320855
source IEEE Electronic Library (IEL) Journals
subjects Finite impulse response filter
Iterative algorithms
Least squares approximation
Power generation
Sampling methods
Signal generators
Software algorithms
Stochastic processes
Testing
title LMS iterative algorithms applied to the computation of TV ghost canceller parameters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A33%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LMS%20iterative%20algorithms%20applied%20to%20the%20computation%20of%20TV%20ghost%20canceller%20parameters&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Yong,%20A.&rft.date=1994-08-01&rft.volume=40&rft.issue=3&rft.spage=662&rft.epage=670&rft.pages=662-670&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/30.320855&rft_dat=%3Cproquest_cross%3E28360735%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c192t-df89e82328526c24af039e31e0af3adee12827f6f13e86d566fcb0c6624b0d2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28360735&rft_id=info:pmid/&rft_ieee_id=320855&rfr_iscdi=true