Loading…
Planar grid embedding in linear time
The authors consider the problem of constructing a planar grid embedding for G, where G is a planar graph with n vertices, which maps vertices to distinct grid points and edges to nonintersecting grid paths. A new algorithm is presented that runs in O(n) time and produces grid embeddings with the fo...
Saved in:
Published in: | IEEE transactions on circuits and systems 1989-09, Vol.36 (9), p.1230-1234 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c273t-f269de11e7cf22b991f3630162063e95d7cf41a451c5a91fdacfac0a5b6da5b43 |
---|---|
cites | cdi_FETCH-LOGICAL-c273t-f269de11e7cf22b991f3630162063e95d7cf41a451c5a91fdacfac0a5b6da5b43 |
container_end_page | 1234 |
container_issue | 9 |
container_start_page | 1230 |
container_title | IEEE transactions on circuits and systems |
container_volume | 36 |
creator | Tamassia, R. Tollis, I.G. |
description | The authors consider the problem of constructing a planar grid embedding for G, where G is a planar graph with n vertices, which maps vertices to distinct grid points and edges to nonintersecting grid paths. A new algorithm is presented that runs in O(n) time and produces grid embeddings with the following properties: (1) the total number of bends is at most 2.4n+2; (2) the number of bends along each edge is at most 4; (3) the length of every edge is O(n); and (4) the area of the embedding is O(n/sup 2/).< > |
doi_str_mv | 10.1109/31.34669 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_31_34669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>34669</ieee_id><sourcerecordid>19778390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-f269de11e7cf22b991f3630162063e95d7cf41a451c5a91fdacfac0a5b6da5b43</originalsourceid><addsrcrecordid>eNpFjztLxEAUhQdRcF0FW7sUCjZZ751XZkpZfMGCFlqHm3ksI0lcZrbx3xuNaHMP3O_jwGHsHGGFCPZG4EpIre0BW6BSpkbe6EO2ALCmlmDlMTsp5R0AjDVmwS5fehopV9ucfBWGLnifxm2VxqpPY5jAPg3hlB1F6ks4-80le7u_e10_1pvnh6f17aZ2vBH7OnJtfUAMjYucd9ZiFFoAag5aBKv89JdIUqFTNEFPLpIDUp3205Fiya7nXpc_SskhtrucBsqfLUL7va4V2P6sm9SrWd1RcdTHTKNL5d-3TWOEhcm7mL0UQvjDc8cXIrhVVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Planar grid embedding in linear time</title><source>IEEE Xplore (Online service)</source><creator>Tamassia, R. ; Tollis, I.G.</creator><creatorcontrib>Tamassia, R. ; Tollis, I.G.</creatorcontrib><description>The authors consider the problem of constructing a planar grid embedding for G, where G is a planar graph with n vertices, which maps vertices to distinct grid points and edges to nonintersecting grid paths. A new algorithm is presented that runs in O(n) time and produces grid embeddings with the following properties: (1) the total number of bends is at most 2.4n+2; (2) the number of bends along each edge is at most 4; (3) the length of every edge is O(n); and (4) the area of the embedding is O(n/sup 2/).< ></description><identifier>ISSN: 0098-4094</identifier><identifier>EISSN: 1558-1276</identifier><identifier>DOI: 10.1109/31.34669</identifier><identifier>CODEN: ICSYBT</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Chaos ; Circuit analysis ; Circuit theory ; Combinatorics ; Combinatorics. Ordered structures ; Differential equations ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Graph theory ; Graphics ; Jacobian matrices ; Mathematics ; Nonlinear systems ; Piecewise linear techniques ; Sciences and techniques of general use ; Vectors</subject><ispartof>IEEE transactions on circuits and systems, 1989-09, Vol.36 (9), p.1230-1234</ispartof><rights>1991 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-f269de11e7cf22b991f3630162063e95d7cf41a451c5a91fdacfac0a5b6da5b43</citedby><cites>FETCH-LOGICAL-c273t-f269de11e7cf22b991f3630162063e95d7cf41a451c5a91fdacfac0a5b6da5b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/34669$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19778390$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tamassia, R.</creatorcontrib><creatorcontrib>Tollis, I.G.</creatorcontrib><title>Planar grid embedding in linear time</title><title>IEEE transactions on circuits and systems</title><addtitle>T-CAS</addtitle><description>The authors consider the problem of constructing a planar grid embedding for G, where G is a planar graph with n vertices, which maps vertices to distinct grid points and edges to nonintersecting grid paths. A new algorithm is presented that runs in O(n) time and produces grid embeddings with the following properties: (1) the total number of bends is at most 2.4n+2; (2) the number of bends along each edge is at most 4; (3) the length of every edge is O(n); and (4) the area of the embedding is O(n/sup 2/).< ></description><subject>Chaos</subject><subject>Circuit analysis</subject><subject>Circuit theory</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Differential equations</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Graphics</subject><subject>Jacobian matrices</subject><subject>Mathematics</subject><subject>Nonlinear systems</subject><subject>Piecewise linear techniques</subject><subject>Sciences and techniques of general use</subject><subject>Vectors</subject><issn>0098-4094</issn><issn>1558-1276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNpFjztLxEAUhQdRcF0FW7sUCjZZ751XZkpZfMGCFlqHm3ksI0lcZrbx3xuNaHMP3O_jwGHsHGGFCPZG4EpIre0BW6BSpkbe6EO2ALCmlmDlMTsp5R0AjDVmwS5fehopV9ucfBWGLnifxm2VxqpPY5jAPg3hlB1F6ks4-80le7u_e10_1pvnh6f17aZ2vBH7OnJtfUAMjYucd9ZiFFoAag5aBKv89JdIUqFTNEFPLpIDUp3205Fiya7nXpc_SskhtrucBsqfLUL7va4V2P6sm9SrWd1RcdTHTKNL5d-3TWOEhcm7mL0UQvjDc8cXIrhVVw</recordid><startdate>19890901</startdate><enddate>19890901</enddate><creator>Tamassia, R.</creator><creator>Tollis, I.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19890901</creationdate><title>Planar grid embedding in linear time</title><author>Tamassia, R. ; Tollis, I.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-f269de11e7cf22b991f3630162063e95d7cf41a451c5a91fdacfac0a5b6da5b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Chaos</topic><topic>Circuit analysis</topic><topic>Circuit theory</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Differential equations</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Graphics</topic><topic>Jacobian matrices</topic><topic>Mathematics</topic><topic>Nonlinear systems</topic><topic>Piecewise linear techniques</topic><topic>Sciences and techniques of general use</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Tamassia, R.</creatorcontrib><creatorcontrib>Tollis, I.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamassia, R.</au><au>Tollis, I.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planar grid embedding in linear time</atitle><jtitle>IEEE transactions on circuits and systems</jtitle><stitle>T-CAS</stitle><date>1989-09-01</date><risdate>1989</risdate><volume>36</volume><issue>9</issue><spage>1230</spage><epage>1234</epage><pages>1230-1234</pages><issn>0098-4094</issn><eissn>1558-1276</eissn><coden>ICSYBT</coden><abstract>The authors consider the problem of constructing a planar grid embedding for G, where G is a planar graph with n vertices, which maps vertices to distinct grid points and edges to nonintersecting grid paths. A new algorithm is presented that runs in O(n) time and produces grid embeddings with the following properties: (1) the total number of bends is at most 2.4n+2; (2) the number of bends along each edge is at most 4; (3) the length of every edge is O(n); and (4) the area of the embedding is O(n/sup 2/).< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/31.34669</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-4094 |
ispartof | IEEE transactions on circuits and systems, 1989-09, Vol.36 (9), p.1230-1234 |
issn | 0098-4094 1558-1276 |
language | eng |
recordid | cdi_crossref_primary_10_1109_31_34669 |
source | IEEE Xplore (Online service) |
subjects | Chaos Circuit analysis Circuit theory Combinatorics Combinatorics. Ordered structures Differential equations Eigenvalues and eigenfunctions Exact sciences and technology Graph theory Graphics Jacobian matrices Mathematics Nonlinear systems Piecewise linear techniques Sciences and techniques of general use Vectors |
title | Planar grid embedding in linear time |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planar%20grid%20embedding%20in%20linear%20time&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems&rft.au=Tamassia,%20R.&rft.date=1989-09-01&rft.volume=36&rft.issue=9&rft.spage=1230&rft.epage=1234&rft.pages=1230-1234&rft.issn=0098-4094&rft.eissn=1558-1276&rft.coden=ICSYBT&rft_id=info:doi/10.1109/31.34669&rft_dat=%3Cpascalfrancis_cross%3E19778390%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-f269de11e7cf22b991f3630162063e95d7cf41a451c5a91fdacfac0a5b6da5b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=34669&rfr_iscdi=true |