Loading…

InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective area MOCVD

The fabrication and basic characteristics of a InGaAs/InGaAsP multi-quantum-well (MQW) electroabsorption modulator with a novel structure integrated with a distributed-feedback (DFB) laser are presented. A fundamental study was performed on the applicability of the InGaAs/InGaAsP MQW structure to an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of quantum electronics 1993-06, Vol.29 (6), p.2088-2096
Main Authors: Aoki, M., Suzuki, M., Sano, H., Kawano, T., Ido, T., Taniwatari, T., Uomi, K., Takai, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The fabrication and basic characteristics of a InGaAs/InGaAsP multi-quantum-well (MQW) electroabsorption modulator with a novel structure integrated with a distributed-feedback (DFB) laser are presented. A fundamental study was performed on the applicability of the InGaAs/InGaAsP MQW structure to an electroabsorption-type modulator. Efficient attenuation small hole pileup and small chirp characteristics of a discrete modulator based on this MQW structure were demonstrated experimentally. A study of the controllability of in-plane band-gap energy by the use of selective-area metal-organic chemical vapor deposition (MOCVD) was also demonstrated. The modulator was monolithically integrated with a MQW DFB laser of the same material. Using a low-capacitance semi-insulating buried heterostructure, over 14 GHz modulation under high-light-output operations up to +10 dBm was achieved. Modulation at 10 Gb/s with a modulation voltage swing of only 1 V/sub pp/ demonstrates the potential value of this system for 1.55- mu m lightwave communications.< >
ISSN:0018-9197
1558-1713
DOI:10.1109/3.234473