Loading…

Analysis of propagation delays in high-speed VLSI circuits using a distributed line model

A scattering parameter-based homogeneous distributed-line model with arbitrary initial and boundary conditions is proposed and its implementation in a general-purpose circuit simulator supporting user functions is described. Using a GaAs 0.5- mu m MESFET technology, the chip delays in very high-spee...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computer-aided design of integrated circuits and systems 1990-08, Vol.9 (8), p.821-826
Main Authors: Passlack, M., Uhle, M., Elschner, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A scattering parameter-based homogeneous distributed-line model with arbitrary initial and boundary conditions is proposed and its implementation in a general-purpose circuit simulator supporting user functions is described. Using a GaAs 0.5- mu m MESFET technology, the chip delays in very high-speed VLSI circuits are calculated. The performance requirements of transistors for high-density integration and for long-distance interconnection drivers are discussed with respect to properties of lossy and lossless interconnection lines. The evaluation of chip delays shows that sub-100-ps VLSI circuits (gate count beyond 10/sup 5/) should involve: (1) complementary logic gates using transistors with transconductance of 1-2.5 S/mm; and (2) high T/sub c/ superconducting long-distance interconnection lines driven by bipolar circuits with transconductance of 2.5 S/mm, unless such long lines can be overcome by new chip architectures.< >
ISSN:0278-0070
1937-4151
DOI:10.1109/43.57789