Loading…
Massively parallel algorithms for scattering in optical lithography
A novel massively parallel technique for rigorous simulation of topography scattering in optical lithography has been developed and tested. The method is equivalent to the time-domain finite-difference method (TDFDM) used in electromagnetic scattering simulations, but exploits the parallel nature of...
Saved in:
Published in: | IEEE transactions on computer-aided design of integrated circuits and systems 1991-09, Vol.10 (9), p.1091-1100 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c369t-1838c105c5ff5080b5da41aaa12bf2ee4b76000e358d2eda474192b28f8045003 |
---|---|
cites | cdi_FETCH-LOGICAL-c369t-1838c105c5ff5080b5da41aaa12bf2ee4b76000e358d2eda474192b28f8045003 |
container_end_page | 1100 |
container_issue | 9 |
container_start_page | 1091 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 10 |
creator | Guerrieri, R. Tadros, K.H. Gamelin, J. Neureuther, A.R. |
description | A novel massively parallel technique for rigorous simulation of topography scattering in optical lithography has been developed and tested. The method is equivalent to the time-domain finite-difference method (TDFDM) used in electromagnetic scattering simulations, but exploits the parallel nature of wave propagation and the power of recent massively parallel architectures such as the Connection Machine. A working code called TEMPEST has been implemented on a Connection Machine CM-2 having 1 to 32 K processors with up to 1 M virtual processors. Numerical accuracy comparable with that of other fully rigorous methods was achieved. A very significant finding was that the solution required constant time per iteration for problems ranging from a few thousand unknowns up to one million, provided the ratio between the problem size and the number of processors is kept constant. The suitability of TEMPEST for solving a large class of topography structures important in alignment, metrology, and lithography is illustrated by examples.< > |
doi_str_mv | 10.1109/43.85755 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_43_85755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>85755</ieee_id><sourcerecordid>28388457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-1838c105c5ff5080b5da41aaa12bf2ee4b76000e358d2eda474192b28f8045003</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFbBrbssRNyk3nk1k6UUX1Bxo-twO73TjkyTOJMK_fempnR1F-fjO9zD2DWHCedQPig5MbrQ-oSNeCmLXHHNT9kIRGFygALO2UVK3wBcaVGO2OwdU_K_FHZZixFDoJBhWDXRd-tNylwTs2Sx6yj6epX5OmvazlsMWeiBZhWxXe8u2ZnDkOjqcMfs6_npc_aazz9e3maP89zKadnl3EhjOWirndNgYKGXqDgicrFwgkgtiikAkNRmKajPCsVLsRDGGVAaQI7Z3eBtY_OzpdRVG58shYA1NdtUib7AKF304P0A2tikFMlVbfQbjLuKQ7VfqVKy-l-pR28PTuz_DC5ibX068loqaab76psB80R0TAfFH8Nabk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28388457</pqid></control><display><type>article</type><title>Massively parallel algorithms for scattering in optical lithography</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Guerrieri, R. ; Tadros, K.H. ; Gamelin, J. ; Neureuther, A.R.</creator><creatorcontrib>Guerrieri, R. ; Tadros, K.H. ; Gamelin, J. ; Neureuther, A.R.</creatorcontrib><description>A novel massively parallel technique for rigorous simulation of topography scattering in optical lithography has been developed and tested. The method is equivalent to the time-domain finite-difference method (TDFDM) used in electromagnetic scattering simulations, but exploits the parallel nature of wave propagation and the power of recent massively parallel architectures such as the Connection Machine. A working code called TEMPEST has been implemented on a Connection Machine CM-2 having 1 to 32 K processors with up to 1 M virtual processors. Numerical accuracy comparable with that of other fully rigorous methods was achieved. A very significant finding was that the solution required constant time per iteration for problems ranging from a few thousand unknowns up to one million, provided the ratio between the problem size and the number of processors is kept constant. The suitability of TEMPEST for solving a large class of topography structures important in alignment, metrology, and lithography is illustrated by examples.< ></description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/43.85755</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Electromagnetic propagation ; Electromagnetic scattering ; Electronics ; Exact sciences and technology ; Finite difference methods ; Lithography ; Optical propagation ; Optical scattering ; Parallel algorithms ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Surfaces ; Testing ; Time domain analysis</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 1991-09, Vol.10 (9), p.1091-1100</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-1838c105c5ff5080b5da41aaa12bf2ee4b76000e358d2eda474192b28f8045003</citedby><cites>FETCH-LOGICAL-c369t-1838c105c5ff5080b5da41aaa12bf2ee4b76000e358d2eda474192b28f8045003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/85755$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5343860$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guerrieri, R.</creatorcontrib><creatorcontrib>Tadros, K.H.</creatorcontrib><creatorcontrib>Gamelin, J.</creatorcontrib><creatorcontrib>Neureuther, A.R.</creatorcontrib><title>Massively parallel algorithms for scattering in optical lithography</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>A novel massively parallel technique for rigorous simulation of topography scattering in optical lithography has been developed and tested. The method is equivalent to the time-domain finite-difference method (TDFDM) used in electromagnetic scattering simulations, but exploits the parallel nature of wave propagation and the power of recent massively parallel architectures such as the Connection Machine. A working code called TEMPEST has been implemented on a Connection Machine CM-2 having 1 to 32 K processors with up to 1 M virtual processors. Numerical accuracy comparable with that of other fully rigorous methods was achieved. A very significant finding was that the solution required constant time per iteration for problems ranging from a few thousand unknowns up to one million, provided the ratio between the problem size and the number of processors is kept constant. The suitability of TEMPEST for solving a large class of topography structures important in alignment, metrology, and lithography is illustrated by examples.< ></description><subject>Applied sciences</subject><subject>Electromagnetic propagation</subject><subject>Electromagnetic scattering</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Finite difference methods</subject><subject>Lithography</subject><subject>Optical propagation</subject><subject>Optical scattering</subject><subject>Parallel algorithms</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Surfaces</subject><subject>Testing</subject><subject>Time domain analysis</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsFbBrbssRNyk3nk1k6UUX1Bxo-twO73TjkyTOJMK_fempnR1F-fjO9zD2DWHCedQPig5MbrQ-oSNeCmLXHHNT9kIRGFygALO2UVK3wBcaVGO2OwdU_K_FHZZixFDoJBhWDXRd-tNylwTs2Sx6yj6epX5OmvazlsMWeiBZhWxXe8u2ZnDkOjqcMfs6_npc_aazz9e3maP89zKadnl3EhjOWirndNgYKGXqDgicrFwgkgtiikAkNRmKajPCsVLsRDGGVAaQI7Z3eBtY_OzpdRVG58shYA1NdtUib7AKF304P0A2tikFMlVbfQbjLuKQ7VfqVKy-l-pR28PTuz_DC5ibX068loqaab76psB80R0TAfFH8Nabk8</recordid><startdate>19910901</startdate><enddate>19910901</enddate><creator>Guerrieri, R.</creator><creator>Tadros, K.H.</creator><creator>Gamelin, J.</creator><creator>Neureuther, A.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19910901</creationdate><title>Massively parallel algorithms for scattering in optical lithography</title><author>Guerrieri, R. ; Tadros, K.H. ; Gamelin, J. ; Neureuther, A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-1838c105c5ff5080b5da41aaa12bf2ee4b76000e358d2eda474192b28f8045003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Applied sciences</topic><topic>Electromagnetic propagation</topic><topic>Electromagnetic scattering</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Finite difference methods</topic><topic>Lithography</topic><topic>Optical propagation</topic><topic>Optical scattering</topic><topic>Parallel algorithms</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Surfaces</topic><topic>Testing</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guerrieri, R.</creatorcontrib><creatorcontrib>Tadros, K.H.</creatorcontrib><creatorcontrib>Gamelin, J.</creatorcontrib><creatorcontrib>Neureuther, A.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guerrieri, R.</au><au>Tadros, K.H.</au><au>Gamelin, J.</au><au>Neureuther, A.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massively parallel algorithms for scattering in optical lithography</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>1991-09-01</date><risdate>1991</risdate><volume>10</volume><issue>9</issue><spage>1091</spage><epage>1100</epage><pages>1091-1100</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>A novel massively parallel technique for rigorous simulation of topography scattering in optical lithography has been developed and tested. The method is equivalent to the time-domain finite-difference method (TDFDM) used in electromagnetic scattering simulations, but exploits the parallel nature of wave propagation and the power of recent massively parallel architectures such as the Connection Machine. A working code called TEMPEST has been implemented on a Connection Machine CM-2 having 1 to 32 K processors with up to 1 M virtual processors. Numerical accuracy comparable with that of other fully rigorous methods was achieved. A very significant finding was that the solution required constant time per iteration for problems ranging from a few thousand unknowns up to one million, provided the ratio between the problem size and the number of processors is kept constant. The suitability of TEMPEST for solving a large class of topography structures important in alignment, metrology, and lithography is illustrated by examples.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/43.85755</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 1991-09, Vol.10 (9), p.1091-1100 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_crossref_primary_10_1109_43_85755 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Electromagnetic propagation Electromagnetic scattering Electronics Exact sciences and technology Finite difference methods Lithography Optical propagation Optical scattering Parallel algorithms Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Surfaces Testing Time domain analysis |
title | Massively parallel algorithms for scattering in optical lithography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massively%20parallel%20algorithms%20for%20scattering%20in%20optical%20lithography&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Guerrieri,%20R.&rft.date=1991-09-01&rft.volume=10&rft.issue=9&rft.spage=1091&rft.epage=1100&rft.pages=1091-1100&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/43.85755&rft_dat=%3Cproquest_cross%3E28388457%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-1838c105c5ff5080b5da41aaa12bf2ee4b76000e358d2eda474192b28f8045003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28388457&rft_id=info:pmid/&rft_ieee_id=85755&rfr_iscdi=true |