Loading…

Massively parallel algorithms for scattering in optical lithography

A novel massively parallel technique for rigorous simulation of topography scattering in optical lithography has been developed and tested. The method is equivalent to the time-domain finite-difference method (TDFDM) used in electromagnetic scattering simulations, but exploits the parallel nature of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computer-aided design of integrated circuits and systems 1991-09, Vol.10 (9), p.1091-1100
Main Authors: Guerrieri, R., Tadros, K.H., Gamelin, J., Neureuther, A.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-1838c105c5ff5080b5da41aaa12bf2ee4b76000e358d2eda474192b28f8045003
cites cdi_FETCH-LOGICAL-c369t-1838c105c5ff5080b5da41aaa12bf2ee4b76000e358d2eda474192b28f8045003
container_end_page 1100
container_issue 9
container_start_page 1091
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 10
creator Guerrieri, R.
Tadros, K.H.
Gamelin, J.
Neureuther, A.R.
description A novel massively parallel technique for rigorous simulation of topography scattering in optical lithography has been developed and tested. The method is equivalent to the time-domain finite-difference method (TDFDM) used in electromagnetic scattering simulations, but exploits the parallel nature of wave propagation and the power of recent massively parallel architectures such as the Connection Machine. A working code called TEMPEST has been implemented on a Connection Machine CM-2 having 1 to 32 K processors with up to 1 M virtual processors. Numerical accuracy comparable with that of other fully rigorous methods was achieved. A very significant finding was that the solution required constant time per iteration for problems ranging from a few thousand unknowns up to one million, provided the ratio between the problem size and the number of processors is kept constant. The suitability of TEMPEST for solving a large class of topography structures important in alignment, metrology, and lithography is illustrated by examples.< >
doi_str_mv 10.1109/43.85755
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_43_85755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>85755</ieee_id><sourcerecordid>28388457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-1838c105c5ff5080b5da41aaa12bf2ee4b76000e358d2eda474192b28f8045003</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFbBrbssRNyk3nk1k6UUX1Bxo-twO73TjkyTOJMK_fempnR1F-fjO9zD2DWHCedQPig5MbrQ-oSNeCmLXHHNT9kIRGFygALO2UVK3wBcaVGO2OwdU_K_FHZZixFDoJBhWDXRd-tNylwTs2Sx6yj6epX5OmvazlsMWeiBZhWxXe8u2ZnDkOjqcMfs6_npc_aazz9e3maP89zKadnl3EhjOWirndNgYKGXqDgicrFwgkgtiikAkNRmKajPCsVLsRDGGVAaQI7Z3eBtY_OzpdRVG58shYA1NdtUib7AKF304P0A2tikFMlVbfQbjLuKQ7VfqVKy-l-pR28PTuz_DC5ibX068loqaab76psB80R0TAfFH8Nabk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28388457</pqid></control><display><type>article</type><title>Massively parallel algorithms for scattering in optical lithography</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Guerrieri, R. ; Tadros, K.H. ; Gamelin, J. ; Neureuther, A.R.</creator><creatorcontrib>Guerrieri, R. ; Tadros, K.H. ; Gamelin, J. ; Neureuther, A.R.</creatorcontrib><description>A novel massively parallel technique for rigorous simulation of topography scattering in optical lithography has been developed and tested. The method is equivalent to the time-domain finite-difference method (TDFDM) used in electromagnetic scattering simulations, but exploits the parallel nature of wave propagation and the power of recent massively parallel architectures such as the Connection Machine. A working code called TEMPEST has been implemented on a Connection Machine CM-2 having 1 to 32 K processors with up to 1 M virtual processors. Numerical accuracy comparable with that of other fully rigorous methods was achieved. A very significant finding was that the solution required constant time per iteration for problems ranging from a few thousand unknowns up to one million, provided the ratio between the problem size and the number of processors is kept constant. The suitability of TEMPEST for solving a large class of topography structures important in alignment, metrology, and lithography is illustrated by examples.&lt; &gt;</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/43.85755</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Electromagnetic propagation ; Electromagnetic scattering ; Electronics ; Exact sciences and technology ; Finite difference methods ; Lithography ; Optical propagation ; Optical scattering ; Parallel algorithms ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Surfaces ; Testing ; Time domain analysis</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 1991-09, Vol.10 (9), p.1091-1100</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-1838c105c5ff5080b5da41aaa12bf2ee4b76000e358d2eda474192b28f8045003</citedby><cites>FETCH-LOGICAL-c369t-1838c105c5ff5080b5da41aaa12bf2ee4b76000e358d2eda474192b28f8045003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/85755$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5343860$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guerrieri, R.</creatorcontrib><creatorcontrib>Tadros, K.H.</creatorcontrib><creatorcontrib>Gamelin, J.</creatorcontrib><creatorcontrib>Neureuther, A.R.</creatorcontrib><title>Massively parallel algorithms for scattering in optical lithography</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>A novel massively parallel technique for rigorous simulation of topography scattering in optical lithography has been developed and tested. The method is equivalent to the time-domain finite-difference method (TDFDM) used in electromagnetic scattering simulations, but exploits the parallel nature of wave propagation and the power of recent massively parallel architectures such as the Connection Machine. A working code called TEMPEST has been implemented on a Connection Machine CM-2 having 1 to 32 K processors with up to 1 M virtual processors. Numerical accuracy comparable with that of other fully rigorous methods was achieved. A very significant finding was that the solution required constant time per iteration for problems ranging from a few thousand unknowns up to one million, provided the ratio between the problem size and the number of processors is kept constant. The suitability of TEMPEST for solving a large class of topography structures important in alignment, metrology, and lithography is illustrated by examples.&lt; &gt;</description><subject>Applied sciences</subject><subject>Electromagnetic propagation</subject><subject>Electromagnetic scattering</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Finite difference methods</subject><subject>Lithography</subject><subject>Optical propagation</subject><subject>Optical scattering</subject><subject>Parallel algorithms</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Surfaces</subject><subject>Testing</subject><subject>Time domain analysis</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsFbBrbssRNyk3nk1k6UUX1Bxo-twO73TjkyTOJMK_fempnR1F-fjO9zD2DWHCedQPig5MbrQ-oSNeCmLXHHNT9kIRGFygALO2UVK3wBcaVGO2OwdU_K_FHZZixFDoJBhWDXRd-tNylwTs2Sx6yj6epX5OmvazlsMWeiBZhWxXe8u2ZnDkOjqcMfs6_npc_aazz9e3maP89zKadnl3EhjOWirndNgYKGXqDgicrFwgkgtiikAkNRmKajPCsVLsRDGGVAaQI7Z3eBtY_OzpdRVG58shYA1NdtUib7AKF304P0A2tikFMlVbfQbjLuKQ7VfqVKy-l-pR28PTuz_DC5ibX068loqaab76psB80R0TAfFH8Nabk8</recordid><startdate>19910901</startdate><enddate>19910901</enddate><creator>Guerrieri, R.</creator><creator>Tadros, K.H.</creator><creator>Gamelin, J.</creator><creator>Neureuther, A.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19910901</creationdate><title>Massively parallel algorithms for scattering in optical lithography</title><author>Guerrieri, R. ; Tadros, K.H. ; Gamelin, J. ; Neureuther, A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-1838c105c5ff5080b5da41aaa12bf2ee4b76000e358d2eda474192b28f8045003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Applied sciences</topic><topic>Electromagnetic propagation</topic><topic>Electromagnetic scattering</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Finite difference methods</topic><topic>Lithography</topic><topic>Optical propagation</topic><topic>Optical scattering</topic><topic>Parallel algorithms</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Surfaces</topic><topic>Testing</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guerrieri, R.</creatorcontrib><creatorcontrib>Tadros, K.H.</creatorcontrib><creatorcontrib>Gamelin, J.</creatorcontrib><creatorcontrib>Neureuther, A.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guerrieri, R.</au><au>Tadros, K.H.</au><au>Gamelin, J.</au><au>Neureuther, A.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massively parallel algorithms for scattering in optical lithography</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>1991-09-01</date><risdate>1991</risdate><volume>10</volume><issue>9</issue><spage>1091</spage><epage>1100</epage><pages>1091-1100</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>A novel massively parallel technique for rigorous simulation of topography scattering in optical lithography has been developed and tested. The method is equivalent to the time-domain finite-difference method (TDFDM) used in electromagnetic scattering simulations, but exploits the parallel nature of wave propagation and the power of recent massively parallel architectures such as the Connection Machine. A working code called TEMPEST has been implemented on a Connection Machine CM-2 having 1 to 32 K processors with up to 1 M virtual processors. Numerical accuracy comparable with that of other fully rigorous methods was achieved. A very significant finding was that the solution required constant time per iteration for problems ranging from a few thousand unknowns up to one million, provided the ratio between the problem size and the number of processors is kept constant. The suitability of TEMPEST for solving a large class of topography structures important in alignment, metrology, and lithography is illustrated by examples.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/43.85755</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 1991-09, Vol.10 (9), p.1091-1100
issn 0278-0070
1937-4151
language eng
recordid cdi_crossref_primary_10_1109_43_85755
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Electromagnetic propagation
Electromagnetic scattering
Electronics
Exact sciences and technology
Finite difference methods
Lithography
Optical propagation
Optical scattering
Parallel algorithms
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Surfaces
Testing
Time domain analysis
title Massively parallel algorithms for scattering in optical lithography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massively%20parallel%20algorithms%20for%20scattering%20in%20optical%20lithography&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Guerrieri,%20R.&rft.date=1991-09-01&rft.volume=10&rft.issue=9&rft.spage=1091&rft.epage=1100&rft.pages=1091-1100&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/43.85755&rft_dat=%3Cproquest_cross%3E28388457%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-1838c105c5ff5080b5da41aaa12bf2ee4b76000e358d2eda474192b28f8045003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28388457&rft_id=info:pmid/&rft_ieee_id=85755&rfr_iscdi=true