Loading…

An AUV survey in the littoral zone: small-scale subsurface variability accompanying synoptic observations of surface currents

A survey of small-scale subsurface variability within the synoptic observational field of an ocean surface current radar (OSCR) using an autonomous underwater vehicle (AUV) is described. The survey involved observation of a developing upper mixed layer in a littoral zone off southeast Florida, on th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of oceanic engineering 2001-10, Vol.26 (4), p.752-768
Main Authors: Dhanak, M.R., An, P.E., Holappa, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A survey of small-scale subsurface variability within the synoptic observational field of an ocean surface current radar (OSCR) using an autonomous underwater vehicle (AUV) is described. The survey involved observation of a developing upper mixed layer in a littoral zone off southeast Florida, on the edge of a strong Florida current during the summer of 1999. Complimentary in situ observations from a bottom-mounted acoustic Doppler current profiler (ADCP), conductivity-temperature (CT) chain arrays, atmospheric measurements from a surface buoy, and CTD and ADCP observations from a surface ship provided the background to the survey. The AUV, the Ocean Explorer, equipped with a CTD, downward and upward looking ADCPs, and a small-scale turbulence package, was used to conduct a continuous 12-h survey of small-to-fine-scale variability within a few grid cells of the surface current radar field. The vehicle repeatedly sampled the same grid in a set pattern at a fixed mid-water depth. Maps of developing spatial distribution of current, salinity, temperature, and rate of dissipation have been developed using the AUV-based observations. The observed features in the current field compare well with the OSCR and the bottom-mounted ADCP measurements.
ISSN:0364-9059
1558-1691
DOI:10.1109/48.972117