Loading…
Multiple-prototype classifier design
Five methods that generate multiple prototypes from labeled data are reviewed. Then we introduce a new sixth approach, which is a modification of Chang's (1974) method. We compare the six methods with two standard classifier designs: the 1-nearest prototype (1-np) and 1-nearest neighbor (1-nn)...
Saved in:
Published in: | IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews man and cybernetics. Part C, Applications and reviews, 1998-02, Vol.28 (1), p.67-79 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Five methods that generate multiple prototypes from labeled data are reviewed. Then we introduce a new sixth approach, which is a modification of Chang's (1974) method. We compare the six methods with two standard classifier designs: the 1-nearest prototype (1-np) and 1-nearest neighbor (1-nn) rules. The standard of comparison is the resubstitution error rate; the data used are the Iris data. Our modified Chang's method produces the best consistent (zero-error) design. One of the competitive learning models produces the best minimal prototypes design (five prototypes that yield three resubstitution errors). |
---|---|
ISSN: | 1094-6977 1558-2442 |
DOI: | 10.1109/5326.661091 |