Loading…

Piezoelectric materials for acoustic wave applications

Piezoelectric materials for acoustic wave applications have changed markedly over the past 20 years in terms of both the types of materials available and the quality of individual samples. The total family of acoustic wave materials now includes piezoelectric glass-ceramics having crystallographic a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 1994-01, Vol.41 (1), p.53-59
Main Authors: Gualtieri, J.G., Kosinski, J.A., Ballato, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-a34ff932ac194ed0cf37e97f95220105850bc99fc3fc4b0bb6e3d6fcfba7232b3
cites cdi_FETCH-LOGICAL-c337t-a34ff932ac194ed0cf37e97f95220105850bc99fc3fc4b0bb6e3d6fcfba7232b3
container_end_page 59
container_issue 1
container_start_page 53
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 41
creator Gualtieri, J.G.
Kosinski, J.A.
Ballato, A.
description Piezoelectric materials for acoustic wave applications have changed markedly over the past 20 years in terms of both the types of materials available and the quality of individual samples. The total family of acoustic wave materials now includes piezoelectric glass-ceramics having crystallographic and polar orientation and crystals having symmetry classes mm2, 32, 3m, 4mm, 6mm, and 4/spl macr/3m. The symmetry classes 6mm and 4/spl macr/3m also occur frequently in piezoelectric semiconductor materials that are now available in both bulk and thin-film configurations. In this paper, we bring together and extract the various reported values of the material constants mainly of interest for surface acoustic wave (SAW) device applications. We identify for the user community those sets of constants from which SAW design calculations can reliably be made, and discuss the constants and their reliability for langasite, lithium niobate/lithium tantalate, and dilithium tetraborate. The relevant material constants include: mass density /spl rho/, elastic stiffness c/sub ij/, piezoelectric stress e/sub ij/, dielectric permittivity /spl epsiv//sub ii/, and the thermal expansion coefficients /spl alpha//sub ii/. Except for the semiconductor materials, only data published after 1978 are included, since the reference literature (Landolt-Bornstein) amply covers those years prior to 1978.< >
doi_str_mv 10.1109/58.265820
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_58_265820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>265820</ieee_id><sourcerecordid>28554339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-a34ff932ac194ed0cf37e97f95220105850bc99fc3fc4b0bb6e3d6fcfba7232b3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKsHr572IIKHrUkm2U2OUuoHFPSg5yU7nUBk212TraK_3i1bevU0MPPMw8vL2KXgMyG4vdNmJgttJD9iE6Glzo3V-phNuDE6By74KTtL6YNzoZSVE1a8BvptqSHsY8Bs7XqKwTUp823MHLbb1A_rb_dFmeu6JqDrQ7tJ5-zEDxRd7OeUvT8s3uZP-fLl8Xl-v8wRoOxzB8p7C9KhsIpWHD2UZEtvtZRDFm00r9Faj-BR1byuC4JV4dHXrpQga5iym9HbxfZzS6mv1iEhNY3b0JCtkpaLgpfif9BorQDsAN6OIMY2pUi-6mJYu_hTCV7tKqy0qcYKB_Z6L3UJXeOj22BIhwewSoPaKa9GLBDR4bp3_AGISHhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28554339</pqid></control><display><type>article</type><title>Piezoelectric materials for acoustic wave applications</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Gualtieri, J.G. ; Kosinski, J.A. ; Ballato, A.</creator><creatorcontrib>Gualtieri, J.G. ; Kosinski, J.A. ; Ballato, A.</creatorcontrib><description>Piezoelectric materials for acoustic wave applications have changed markedly over the past 20 years in terms of both the types of materials available and the quality of individual samples. The total family of acoustic wave materials now includes piezoelectric glass-ceramics having crystallographic and polar orientation and crystals having symmetry classes mm2, 32, 3m, 4mm, 6mm, and 4/spl macr/3m. The symmetry classes 6mm and 4/spl macr/3m also occur frequently in piezoelectric semiconductor materials that are now available in both bulk and thin-film configurations. In this paper, we bring together and extract the various reported values of the material constants mainly of interest for surface acoustic wave (SAW) device applications. We identify for the user community those sets of constants from which SAW design calculations can reliably be made, and discuss the constants and their reliability for langasite, lithium niobate/lithium tantalate, and dilithium tetraborate. The relevant material constants include: mass density /spl rho/, elastic stiffness c/sub ij/, piezoelectric stress e/sub ij/, dielectric permittivity /spl epsiv//sub ii/, and the thermal expansion coefficients /spl alpha//sub ii/. Except for the semiconductor materials, only data published after 1978 are included, since the reference literature (Landolt-Bornstein) amply covers those years prior to 1978.&lt; &gt;</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/58.265820</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic materials ; Acoustic waves ; Acoustical measurements and instrumentation ; Acoustics ; Crystalline materials ; Crystallography ; Crystals ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Piezoelectric films ; Piezoelectric materials ; Semiconductor materials ; Surface acoustic waves ; Thermal stresses</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1994-01, Vol.41 (1), p.53-59</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-a34ff932ac194ed0cf37e97f95220105850bc99fc3fc4b0bb6e3d6fcfba7232b3</citedby><cites>FETCH-LOGICAL-c337t-a34ff932ac194ed0cf37e97f95220105850bc99fc3fc4b0bb6e3d6fcfba7232b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/265820$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3945349$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gualtieri, J.G.</creatorcontrib><creatorcontrib>Kosinski, J.A.</creatorcontrib><creatorcontrib>Ballato, A.</creatorcontrib><title>Piezoelectric materials for acoustic wave applications</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><description>Piezoelectric materials for acoustic wave applications have changed markedly over the past 20 years in terms of both the types of materials available and the quality of individual samples. The total family of acoustic wave materials now includes piezoelectric glass-ceramics having crystallographic and polar orientation and crystals having symmetry classes mm2, 32, 3m, 4mm, 6mm, and 4/spl macr/3m. The symmetry classes 6mm and 4/spl macr/3m also occur frequently in piezoelectric semiconductor materials that are now available in both bulk and thin-film configurations. In this paper, we bring together and extract the various reported values of the material constants mainly of interest for surface acoustic wave (SAW) device applications. We identify for the user community those sets of constants from which SAW design calculations can reliably be made, and discuss the constants and their reliability for langasite, lithium niobate/lithium tantalate, and dilithium tetraborate. The relevant material constants include: mass density /spl rho/, elastic stiffness c/sub ij/, piezoelectric stress e/sub ij/, dielectric permittivity /spl epsiv//sub ii/, and the thermal expansion coefficients /spl alpha//sub ii/. Except for the semiconductor materials, only data published after 1978 are included, since the reference literature (Landolt-Bornstein) amply covers those years prior to 1978.&lt; &gt;</description><subject>Acoustic materials</subject><subject>Acoustic waves</subject><subject>Acoustical measurements and instrumentation</subject><subject>Acoustics</subject><subject>Crystalline materials</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Piezoelectric films</subject><subject>Piezoelectric materials</subject><subject>Semiconductor materials</subject><subject>Surface acoustic waves</subject><subject>Thermal stresses</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKsHr572IIKHrUkm2U2OUuoHFPSg5yU7nUBk212TraK_3i1bevU0MPPMw8vL2KXgMyG4vdNmJgttJD9iE6Glzo3V-phNuDE6By74KTtL6YNzoZSVE1a8BvptqSHsY8Bs7XqKwTUp823MHLbb1A_rb_dFmeu6JqDrQ7tJ5-zEDxRd7OeUvT8s3uZP-fLl8Xl-v8wRoOxzB8p7C9KhsIpWHD2UZEtvtZRDFm00r9Faj-BR1byuC4JV4dHXrpQga5iym9HbxfZzS6mv1iEhNY3b0JCtkpaLgpfif9BorQDsAN6OIMY2pUi-6mJYu_hTCV7tKqy0qcYKB_Z6L3UJXeOj22BIhwewSoPaKa9GLBDR4bp3_AGISHhg</recordid><startdate>199401</startdate><enddate>199401</enddate><creator>Gualtieri, J.G.</creator><creator>Kosinski, J.A.</creator><creator>Ballato, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7U5</scope></search><sort><creationdate>199401</creationdate><title>Piezoelectric materials for acoustic wave applications</title><author>Gualtieri, J.G. ; Kosinski, J.A. ; Ballato, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-a34ff932ac194ed0cf37e97f95220105850bc99fc3fc4b0bb6e3d6fcfba7232b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Acoustic materials</topic><topic>Acoustic waves</topic><topic>Acoustical measurements and instrumentation</topic><topic>Acoustics</topic><topic>Crystalline materials</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Piezoelectric films</topic><topic>Piezoelectric materials</topic><topic>Semiconductor materials</topic><topic>Surface acoustic waves</topic><topic>Thermal stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gualtieri, J.G.</creatorcontrib><creatorcontrib>Kosinski, J.A.</creatorcontrib><creatorcontrib>Ballato, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gualtieri, J.G.</au><au>Kosinski, J.A.</au><au>Ballato, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piezoelectric materials for acoustic wave applications</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><date>1994-01</date><risdate>1994</risdate><volume>41</volume><issue>1</issue><spage>53</spage><epage>59</epage><pages>53-59</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Piezoelectric materials for acoustic wave applications have changed markedly over the past 20 years in terms of both the types of materials available and the quality of individual samples. The total family of acoustic wave materials now includes piezoelectric glass-ceramics having crystallographic and polar orientation and crystals having symmetry classes mm2, 32, 3m, 4mm, 6mm, and 4/spl macr/3m. The symmetry classes 6mm and 4/spl macr/3m also occur frequently in piezoelectric semiconductor materials that are now available in both bulk and thin-film configurations. In this paper, we bring together and extract the various reported values of the material constants mainly of interest for surface acoustic wave (SAW) device applications. We identify for the user community those sets of constants from which SAW design calculations can reliably be made, and discuss the constants and their reliability for langasite, lithium niobate/lithium tantalate, and dilithium tetraborate. The relevant material constants include: mass density /spl rho/, elastic stiffness c/sub ij/, piezoelectric stress e/sub ij/, dielectric permittivity /spl epsiv//sub ii/, and the thermal expansion coefficients /spl alpha//sub ii/. Except for the semiconductor materials, only data published after 1978 are included, since the reference literature (Landolt-Bornstein) amply covers those years prior to 1978.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/58.265820</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1994-01, Vol.41 (1), p.53-59
issn 0885-3010
1525-8955
language eng
recordid cdi_crossref_primary_10_1109_58_265820
source IEEE Electronic Library (IEL) Journals
subjects Acoustic materials
Acoustic waves
Acoustical measurements and instrumentation
Acoustics
Crystalline materials
Crystallography
Crystals
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Piezoelectric films
Piezoelectric materials
Semiconductor materials
Surface acoustic waves
Thermal stresses
title Piezoelectric materials for acoustic wave applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piezoelectric%20materials%20for%20acoustic%20wave%20applications&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Gualtieri,%20J.G.&rft.date=1994-01&rft.volume=41&rft.issue=1&rft.spage=53&rft.epage=59&rft.pages=53-59&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/58.265820&rft_dat=%3Cproquest_cross%3E28554339%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-a34ff932ac194ed0cf37e97f95220105850bc99fc3fc4b0bb6e3d6fcfba7232b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28554339&rft_id=info:pmid/&rft_ieee_id=265820&rfr_iscdi=true