Loading…
Representation of qualitative user preference by quantitative belief functions
Many intelligent systems employ numeric degrees of belief supplied by the users to make decisions. However, the users may have difficulties in expressing their belief in terms of numeric values. The authors present a method for generating belief functions from symbolic information such as the qualit...
Saved in:
Published in: | IEEE transactions on knowledge and data engineering 1994-02, Vol.6 (1), p.72-78 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-c0706498eba56494e40f18d1bb0d139ca7cd41f19606eeab53cc9b8db08116373 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-c0706498eba56494e40f18d1bb0d139ca7cd41f19606eeab53cc9b8db08116373 |
container_end_page | 78 |
container_issue | 1 |
container_start_page | 72 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 6 |
creator | Wong, S.K.M. Lingras, P. |
description | Many intelligent systems employ numeric degrees of belief supplied by the users to make decisions. However, the users may have difficulties in expressing their belief in terms of numeric values. The authors present a method for generating belief functions from symbolic information such as the qualitative preference relationships. The method of generating belief functions provides a practical interface between the users and a decision support system. It can be argued that the ability to generate numeric judgments with nonnumeric inputs is essential in the development of approximate reasoning systems. The proposed method can provide an important component for these systems by transforming qualitative information into quantitative information.< > |
doi_str_mv | 10.1109/69.273027 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_69_273027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>273027</ieee_id><sourcerecordid>29572648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-c0706498eba56494e40f18d1bb0d139ca7cd41f19606eeab53cc9b8db08116373</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK4evHrqQQQPXTNNmo-jLH7BoiB6Lkk6gUq33U1awf_elF336mlmeL_3YB4hl0AXAFTfCb0oJKOFPCIzKEuVF6DhOO2UQ84Zl6fkLMYvSqmSCmbk9R03ASN2gxmavst6n21H0zbT-Y3ZGDFkCfAYsHOY2Z9J7oY_3WLboM_82LnJHs_JiTdtxIv9nJPPx4eP5XO-ent6Wd6vcseYHHJHJRVcK7SmTJMjpx5UDdbSGph2RrqagwctqEA0tmTOaatqSxWAYJLNyc0udxP67YhxqNZNdNi2psN-jFWhS1kIrv4HVQKB0QTe7kAX-hjTx9UmNGsTfiqg1VRtJXS1qzax1_tQE51pfTCda-LBwKEUBeMJu9phDSIe1H3GL0ZXgQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28572130</pqid></control><display><type>article</type><title>Representation of qualitative user preference by quantitative belief functions</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wong, S.K.M. ; Lingras, P.</creator><creatorcontrib>Wong, S.K.M. ; Lingras, P.</creatorcontrib><description>Many intelligent systems employ numeric degrees of belief supplied by the users to make decisions. However, the users may have difficulties in expressing their belief in terms of numeric values. The authors present a method for generating belief functions from symbolic information such as the qualitative preference relationships. The method of generating belief functions provides a practical interface between the users and a decision support system. It can be argued that the ability to generate numeric judgments with nonnumeric inputs is essential in the development of approximate reasoning systems. The proposed method can provide an important component for these systems by transforming qualitative information into quantitative information.< ></description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/69.273027</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Bayesian methods ; Computer science ; Computer science; control theory; systems ; Decision support systems ; Exact sciences and technology ; Humans ; Intelligent systems ; Learning and adaptive systems ; Probability ; Quality management ; Statistics ; Uncertainty</subject><ispartof>IEEE transactions on knowledge and data engineering, 1994-02, Vol.6 (1), p.72-78</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-c0706498eba56494e40f18d1bb0d139ca7cd41f19606eeab53cc9b8db08116373</citedby><cites>FETCH-LOGICAL-c337t-c0706498eba56494e40f18d1bb0d139ca7cd41f19606eeab53cc9b8db08116373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/273027$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4156234$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wong, S.K.M.</creatorcontrib><creatorcontrib>Lingras, P.</creatorcontrib><title>Representation of qualitative user preference by quantitative belief functions</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Many intelligent systems employ numeric degrees of belief supplied by the users to make decisions. However, the users may have difficulties in expressing their belief in terms of numeric values. The authors present a method for generating belief functions from symbolic information such as the qualitative preference relationships. The method of generating belief functions provides a practical interface between the users and a decision support system. It can be argued that the ability to generate numeric judgments with nonnumeric inputs is essential in the development of approximate reasoning systems. The proposed method can provide an important component for these systems by transforming qualitative information into quantitative information.< ></description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Bayesian methods</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Decision support systems</subject><subject>Exact sciences and technology</subject><subject>Humans</subject><subject>Intelligent systems</subject><subject>Learning and adaptive systems</subject><subject>Probability</subject><subject>Quality management</subject><subject>Statistics</subject><subject>Uncertainty</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK4evHrqQQQPXTNNmo-jLH7BoiB6Lkk6gUq33U1awf_elF336mlmeL_3YB4hl0AXAFTfCb0oJKOFPCIzKEuVF6DhOO2UQ84Zl6fkLMYvSqmSCmbk9R03ASN2gxmavst6n21H0zbT-Y3ZGDFkCfAYsHOY2Z9J7oY_3WLboM_82LnJHs_JiTdtxIv9nJPPx4eP5XO-ent6Wd6vcseYHHJHJRVcK7SmTJMjpx5UDdbSGph2RrqagwctqEA0tmTOaatqSxWAYJLNyc0udxP67YhxqNZNdNi2psN-jFWhS1kIrv4HVQKB0QTe7kAX-hjTx9UmNGsTfiqg1VRtJXS1qzax1_tQE51pfTCda-LBwKEUBeMJu9phDSIe1H3GL0ZXgQA</recordid><startdate>19940201</startdate><enddate>19940201</enddate><creator>Wong, S.K.M.</creator><creator>Lingras, P.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19940201</creationdate><title>Representation of qualitative user preference by quantitative belief functions</title><author>Wong, S.K.M. ; Lingras, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-c0706498eba56494e40f18d1bb0d139ca7cd41f19606eeab53cc9b8db08116373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Bayesian methods</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Decision support systems</topic><topic>Exact sciences and technology</topic><topic>Humans</topic><topic>Intelligent systems</topic><topic>Learning and adaptive systems</topic><topic>Probability</topic><topic>Quality management</topic><topic>Statistics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, S.K.M.</creatorcontrib><creatorcontrib>Lingras, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, S.K.M.</au><au>Lingras, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representation of qualitative user preference by quantitative belief functions</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>1994-02-01</date><risdate>1994</risdate><volume>6</volume><issue>1</issue><spage>72</spage><epage>78</epage><pages>72-78</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Many intelligent systems employ numeric degrees of belief supplied by the users to make decisions. However, the users may have difficulties in expressing their belief in terms of numeric values. The authors present a method for generating belief functions from symbolic information such as the qualitative preference relationships. The method of generating belief functions provides a practical interface between the users and a decision support system. It can be argued that the ability to generate numeric judgments with nonnumeric inputs is essential in the development of approximate reasoning systems. The proposed method can provide an important component for these systems by transforming qualitative information into quantitative information.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/69.273027</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 1994-02, Vol.6 (1), p.72-78 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_crossref_primary_10_1109_69_273027 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Artificial intelligence Bayesian methods Computer science Computer science control theory systems Decision support systems Exact sciences and technology Humans Intelligent systems Learning and adaptive systems Probability Quality management Statistics Uncertainty |
title | Representation of qualitative user preference by quantitative belief functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representation%20of%20qualitative%20user%20preference%20by%20quantitative%20belief%20functions&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Wong,%20S.K.M.&rft.date=1994-02-01&rft.volume=6&rft.issue=1&rft.spage=72&rft.epage=78&rft.pages=72-78&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/69.273027&rft_dat=%3Cproquest_cross%3E29572648%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-c0706498eba56494e40f18d1bb0d139ca7cd41f19606eeab53cc9b8db08116373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28572130&rft_id=info:pmid/&rft_ieee_id=273027&rfr_iscdi=true |