Loading…

Representation of qualitative user preference by quantitative belief functions

Many intelligent systems employ numeric degrees of belief supplied by the users to make decisions. However, the users may have difficulties in expressing their belief in terms of numeric values. The authors present a method for generating belief functions from symbolic information such as the qualit...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering 1994-02, Vol.6 (1), p.72-78
Main Authors: Wong, S.K.M., Lingras, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-c0706498eba56494e40f18d1bb0d139ca7cd41f19606eeab53cc9b8db08116373
cites cdi_FETCH-LOGICAL-c337t-c0706498eba56494e40f18d1bb0d139ca7cd41f19606eeab53cc9b8db08116373
container_end_page 78
container_issue 1
container_start_page 72
container_title IEEE transactions on knowledge and data engineering
container_volume 6
creator Wong, S.K.M.
Lingras, P.
description Many intelligent systems employ numeric degrees of belief supplied by the users to make decisions. However, the users may have difficulties in expressing their belief in terms of numeric values. The authors present a method for generating belief functions from symbolic information such as the qualitative preference relationships. The method of generating belief functions provides a practical interface between the users and a decision support system. It can be argued that the ability to generate numeric judgments with nonnumeric inputs is essential in the development of approximate reasoning systems. The proposed method can provide an important component for these systems by transforming qualitative information into quantitative information.< >
doi_str_mv 10.1109/69.273027
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_69_273027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>273027</ieee_id><sourcerecordid>29572648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-c0706498eba56494e40f18d1bb0d139ca7cd41f19606eeab53cc9b8db08116373</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK4evHrqQQQPXTNNmo-jLH7BoiB6Lkk6gUq33U1awf_elF336mlmeL_3YB4hl0AXAFTfCb0oJKOFPCIzKEuVF6DhOO2UQ84Zl6fkLMYvSqmSCmbk9R03ASN2gxmavst6n21H0zbT-Y3ZGDFkCfAYsHOY2Z9J7oY_3WLboM_82LnJHs_JiTdtxIv9nJPPx4eP5XO-ent6Wd6vcseYHHJHJRVcK7SmTJMjpx5UDdbSGph2RrqagwctqEA0tmTOaatqSxWAYJLNyc0udxP67YhxqNZNdNi2psN-jFWhS1kIrv4HVQKB0QTe7kAX-hjTx9UmNGsTfiqg1VRtJXS1qzax1_tQE51pfTCda-LBwKEUBeMJu9phDSIe1H3GL0ZXgQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28572130</pqid></control><display><type>article</type><title>Representation of qualitative user preference by quantitative belief functions</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wong, S.K.M. ; Lingras, P.</creator><creatorcontrib>Wong, S.K.M. ; Lingras, P.</creatorcontrib><description>Many intelligent systems employ numeric degrees of belief supplied by the users to make decisions. However, the users may have difficulties in expressing their belief in terms of numeric values. The authors present a method for generating belief functions from symbolic information such as the qualitative preference relationships. The method of generating belief functions provides a practical interface between the users and a decision support system. It can be argued that the ability to generate numeric judgments with nonnumeric inputs is essential in the development of approximate reasoning systems. The proposed method can provide an important component for these systems by transforming qualitative information into quantitative information.&lt; &gt;</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/69.273027</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Bayesian methods ; Computer science ; Computer science; control theory; systems ; Decision support systems ; Exact sciences and technology ; Humans ; Intelligent systems ; Learning and adaptive systems ; Probability ; Quality management ; Statistics ; Uncertainty</subject><ispartof>IEEE transactions on knowledge and data engineering, 1994-02, Vol.6 (1), p.72-78</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-c0706498eba56494e40f18d1bb0d139ca7cd41f19606eeab53cc9b8db08116373</citedby><cites>FETCH-LOGICAL-c337t-c0706498eba56494e40f18d1bb0d139ca7cd41f19606eeab53cc9b8db08116373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/273027$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4156234$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wong, S.K.M.</creatorcontrib><creatorcontrib>Lingras, P.</creatorcontrib><title>Representation of qualitative user preference by quantitative belief functions</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Many intelligent systems employ numeric degrees of belief supplied by the users to make decisions. However, the users may have difficulties in expressing their belief in terms of numeric values. The authors present a method for generating belief functions from symbolic information such as the qualitative preference relationships. The method of generating belief functions provides a practical interface between the users and a decision support system. It can be argued that the ability to generate numeric judgments with nonnumeric inputs is essential in the development of approximate reasoning systems. The proposed method can provide an important component for these systems by transforming qualitative information into quantitative information.&lt; &gt;</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Bayesian methods</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Decision support systems</subject><subject>Exact sciences and technology</subject><subject>Humans</subject><subject>Intelligent systems</subject><subject>Learning and adaptive systems</subject><subject>Probability</subject><subject>Quality management</subject><subject>Statistics</subject><subject>Uncertainty</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK4evHrqQQQPXTNNmo-jLH7BoiB6Lkk6gUq33U1awf_elF336mlmeL_3YB4hl0AXAFTfCb0oJKOFPCIzKEuVF6DhOO2UQ84Zl6fkLMYvSqmSCmbk9R03ASN2gxmavst6n21H0zbT-Y3ZGDFkCfAYsHOY2Z9J7oY_3WLboM_82LnJHs_JiTdtxIv9nJPPx4eP5XO-ent6Wd6vcseYHHJHJRVcK7SmTJMjpx5UDdbSGph2RrqagwctqEA0tmTOaatqSxWAYJLNyc0udxP67YhxqNZNdNi2psN-jFWhS1kIrv4HVQKB0QTe7kAX-hjTx9UmNGsTfiqg1VRtJXS1qzax1_tQE51pfTCda-LBwKEUBeMJu9phDSIe1H3GL0ZXgQA</recordid><startdate>19940201</startdate><enddate>19940201</enddate><creator>Wong, S.K.M.</creator><creator>Lingras, P.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19940201</creationdate><title>Representation of qualitative user preference by quantitative belief functions</title><author>Wong, S.K.M. ; Lingras, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-c0706498eba56494e40f18d1bb0d139ca7cd41f19606eeab53cc9b8db08116373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Bayesian methods</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Decision support systems</topic><topic>Exact sciences and technology</topic><topic>Humans</topic><topic>Intelligent systems</topic><topic>Learning and adaptive systems</topic><topic>Probability</topic><topic>Quality management</topic><topic>Statistics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, S.K.M.</creatorcontrib><creatorcontrib>Lingras, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, S.K.M.</au><au>Lingras, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representation of qualitative user preference by quantitative belief functions</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>1994-02-01</date><risdate>1994</risdate><volume>6</volume><issue>1</issue><spage>72</spage><epage>78</epage><pages>72-78</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Many intelligent systems employ numeric degrees of belief supplied by the users to make decisions. However, the users may have difficulties in expressing their belief in terms of numeric values. The authors present a method for generating belief functions from symbolic information such as the qualitative preference relationships. The method of generating belief functions provides a practical interface between the users and a decision support system. It can be argued that the ability to generate numeric judgments with nonnumeric inputs is essential in the development of approximate reasoning systems. The proposed method can provide an important component for these systems by transforming qualitative information into quantitative information.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/69.273027</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 1994-02, Vol.6 (1), p.72-78
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_69_273027
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Artificial intelligence
Bayesian methods
Computer science
Computer science
control theory
systems
Decision support systems
Exact sciences and technology
Humans
Intelligent systems
Learning and adaptive systems
Probability
Quality management
Statistics
Uncertainty
title Representation of qualitative user preference by quantitative belief functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representation%20of%20qualitative%20user%20preference%20by%20quantitative%20belief%20functions&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Wong,%20S.K.M.&rft.date=1994-02-01&rft.volume=6&rft.issue=1&rft.spage=72&rft.epage=78&rft.pages=72-78&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/69.273027&rft_dat=%3Cproquest_cross%3E29572648%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-c0706498eba56494e40f18d1bb0d139ca7cd41f19606eeab53cc9b8db08116373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28572130&rft_id=info:pmid/&rft_ieee_id=273027&rfr_iscdi=true