Loading…

PCLS IIR digital filters with simultaneous frequency response magnitude and group delay specifications

This paper presents the peak-constrained least-squares (PCLS) approach to designing IIR digital filters. PCLS IIR digital filters that meet simultaneous specifications on the frequency response magnitude and the group delay are introduced. As a point of reference, we consider the IIR digital filter...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 1998-11, Vol.46 (11), p.2853-2861
Main Authors: Sullivan, J.L., Adams, J.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents the peak-constrained least-squares (PCLS) approach to designing IIR digital filters. PCLS IIR digital filters that meet simultaneous specifications on the frequency response magnitude and the group delay are introduced. As a point of reference, we consider the IIR digital filter design problem that appears in Deczky's (1972) classic paper and in the popular textbook by Oppenheim and Schafer (1989). In addition, the same design problem appears in the IIR filter design chapter by Higgins and Munson (1993) in the Handbook for Digital Signal Processing. By using our new algorithm with simultaneous optimization of the frequency response magnitude and the group delay, we obtain a dramatic improvement in the solution of this classic IIR digital filter design problem. Starting from the same filter structure and the same specifications for the frequency response magnitude as in the works of Deczky, Oppenheim and Schafer, and Higgins and Munson, we are able to reduce the group delay ripple by a factor of 35. In another design problem that originated in Deczky's work, we use PCLS optimization to reduce the group delay ripple by a factor of 40 at the same time we reduce the stopband energy by 6 dB, without sacrificing any other performance measure. The group delay ripple in this IIR digital filter example is reduced to only /spl plusmn/0.002 samples.
ISSN:1053-587X
1941-0476
DOI:10.1109/78.726800