Loading…

Asymptotic distribution of the conditional signal-to-noise ratio in an eigenanalysis-based adaptive array

The statistical characterization of the conditioned signal-to-noise ratio (SNR) of the sample matrix inversion (SMI) method has been known for some time. An eigenanalysis-based detection method, referred to as the eigencanceler, has been shown to be a useful alternative to SMI, when the interference...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems 1997-07, Vol.33 (3), p.988-997
Main Author: HAIMOVICH, A. M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The statistical characterization of the conditioned signal-to-noise ratio (SNR) of the sample matrix inversion (SMI) method has been known for some time. An eigenanalysis-based detection method, referred to as the eigencanceler, has been shown to be a useful alternative to SMI, when the interference has low rank. In this work, the density function of the conditioned SNR is developed for the eigencanceler. The development is based on the asymptotic expansion of the distribution of the principal components of the covariance matrix. It is shown that, unlike the SMI method, the eigencanceler yields a conditional SNR distribution that is dependent on the covariance matrix, It is further shown that simpler, covariance matrix-independent approximations can be found for the large interference-to-noise case. The new distribution is shown to be in good agreement with the numerical data obtained from simulations.
ISSN:0018-9251
1557-9603
DOI:10.1109/7.599322