Loading…

The segmentation of cursive handwriting: an approach based on off-line recovery of the motor-temporal information

This paper presents a segmentation method that partly mimics the cognitive-behavioral process used by human subjects to recover motor-temporal information from the image of a handwritten word. The approach does not exploit any thinning or skeletonization procedure, but rather a different type of inf...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 1999-01, Vol.8 (1), p.80-91
Main Authors: Plamondon, R., Privitera, C.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c490t-e900a40a7b80b4d48bc662d888ba9b2d2f67879b21c4d406a47a7d65e77812dd3
cites cdi_FETCH-LOGICAL-c490t-e900a40a7b80b4d48bc662d888ba9b2d2f67879b21c4d406a47a7d65e77812dd3
container_end_page 91
container_issue 1
container_start_page 80
container_title IEEE transactions on image processing
container_volume 8
creator Plamondon, R.
Privitera, C.M.
description This paper presents a segmentation method that partly mimics the cognitive-behavioral process used by human subjects to recover motor-temporal information from the image of a handwritten word. The approach does not exploit any thinning or skeletonization procedure, but rather a different type of information is manipulated concerning the curvature function of the word contour. In this way, it is possible to detect the parts of the image where the original odometric information is lost or ambiguous (such as, for example, at an intersection of the handwritten lines) and interpret them to finally recover a part of the original temporal information. The algorithm scans the word, following the natural course of the line, and attempts to reproduce the same movement as executed by the writer during the generation of the word. It segments the cursive trace where the contour shows the slow-down of the original movement (corresponding to the maximum curvature points of the curve). At the end of the scanning process, a temporal sequence of motor strokes is obtained which plausibly composed the original intended movement.
doi_str_mv 10.1109/83.736691
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_83_736691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>736691</ieee_id><sourcerecordid>919915742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-e900a40a7b80b4d48bc662d888ba9b2d2f67879b21c4d406a47a7d65e77812dd3</originalsourceid><addsrcrecordid>eNqF0T1vFDEQBmALgUgIFLQUyAUCUWzweL3-SIei8CFFogn1ymvP5ox27Yu9lyj_Hl9uRTpSeaR5PGP5JeQtsFMAZr7o9lS1Uhp4Ro7BCGgYE_x5rVmnGgXCHJFXpfxhDEQH8iU5As0l11Idk5urDdKC1zPGxS4hRZpG6na5hFukGxv9XQ5LiNdn1EZqt9ucrNvQwRb09AGPzRQi0owu3WK-319f6sg5LSk3C87blO1EQxxTnh8WvCYvRjsVfLOeJ-T3t4ur8x_N5a_vP8-_XjZOGLY0aBizglk1aDYIL_TgpOReaz1YM3DPR6m0qhW42mXSCmWVlx0qpYF7356QT4e59c03OyxLP4ficJpsxLQrvQFjoFOCPylVK0ArDqbKj_-VvDJdP_1pqIBLBnv4-QBdTqVkHPttDrPN9z2wfh9ur9v-EG6179ehu2FG_yjXNCv4sAJbnJ3GbKML5dHJlnWdqOzdgQVE_Nddl_wFaa-z5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27126017</pqid></control><display><type>article</type><title>The segmentation of cursive handwriting: an approach based on off-line recovery of the motor-temporal information</title><source>IEEE Xplore (Online service)</source><creator>Plamondon, R. ; Privitera, C.M.</creator><creatorcontrib>Plamondon, R. ; Privitera, C.M.</creatorcontrib><description>This paper presents a segmentation method that partly mimics the cognitive-behavioral process used by human subjects to recover motor-temporal information from the image of a handwritten word. The approach does not exploit any thinning or skeletonization procedure, but rather a different type of information is manipulated concerning the curvature function of the word contour. In this way, it is possible to detect the parts of the image where the original odometric information is lost or ambiguous (such as, for example, at an intersection of the handwritten lines) and interpret them to finally recover a part of the original temporal information. The algorithm scans the word, following the natural course of the line, and attempts to reproduce the same movement as executed by the writer during the generation of the word. It segments the cursive trace where the contour shows the slow-down of the original movement (corresponding to the maximum curvature points of the curve). At the end of the scanning process, a temporal sequence of motor strokes is obtained which plausibly composed the original intended movement.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/83.736691</identifier><identifier>PMID: 18262867</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Angular velocity ; Applied sciences ; Computer science ; Curvature ; Exact sciences and technology ; Graphics ; Humans ; Image processing ; Image segmentation ; Information, signal and communications theory ; Iris ; Mathematical analysis ; Movement ; Nervous system ; Process planning ; Segmentation ; Shape ; Signal processing ; Telecommunications and information theory ; Temporal logic</subject><ispartof>IEEE transactions on image processing, 1999-01, Vol.8 (1), p.80-91</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-e900a40a7b80b4d48bc662d888ba9b2d2f67879b21c4d406a47a7d65e77812dd3</citedby><cites>FETCH-LOGICAL-c490t-e900a40a7b80b4d48bc662d888ba9b2d2f67879b21c4d406a47a7d65e77812dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/736691$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,4012,27910,27911,27912,54783</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1630554$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18262867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Plamondon, R.</creatorcontrib><creatorcontrib>Privitera, C.M.</creatorcontrib><title>The segmentation of cursive handwriting: an approach based on off-line recovery of the motor-temporal information</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>This paper presents a segmentation method that partly mimics the cognitive-behavioral process used by human subjects to recover motor-temporal information from the image of a handwritten word. The approach does not exploit any thinning or skeletonization procedure, but rather a different type of information is manipulated concerning the curvature function of the word contour. In this way, it is possible to detect the parts of the image where the original odometric information is lost or ambiguous (such as, for example, at an intersection of the handwritten lines) and interpret them to finally recover a part of the original temporal information. The algorithm scans the word, following the natural course of the line, and attempts to reproduce the same movement as executed by the writer during the generation of the word. It segments the cursive trace where the contour shows the slow-down of the original movement (corresponding to the maximum curvature points of the curve). At the end of the scanning process, a temporal sequence of motor strokes is obtained which plausibly composed the original intended movement.</description><subject>Algorithms</subject><subject>Angular velocity</subject><subject>Applied sciences</subject><subject>Computer science</subject><subject>Curvature</subject><subject>Exact sciences and technology</subject><subject>Graphics</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Information, signal and communications theory</subject><subject>Iris</subject><subject>Mathematical analysis</subject><subject>Movement</subject><subject>Nervous system</subject><subject>Process planning</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><subject>Temporal logic</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqF0T1vFDEQBmALgUgIFLQUyAUCUWzweL3-SIei8CFFogn1ymvP5ox27Yu9lyj_Hl9uRTpSeaR5PGP5JeQtsFMAZr7o9lS1Uhp4Ro7BCGgYE_x5rVmnGgXCHJFXpfxhDEQH8iU5As0l11Idk5urDdKC1zPGxS4hRZpG6na5hFukGxv9XQ5LiNdn1EZqt9ucrNvQwRb09AGPzRQi0owu3WK-319f6sg5LSk3C87blO1EQxxTnh8WvCYvRjsVfLOeJ-T3t4ur8x_N5a_vP8-_XjZOGLY0aBizglk1aDYIL_TgpOReaz1YM3DPR6m0qhW42mXSCmWVlx0qpYF7356QT4e59c03OyxLP4ficJpsxLQrvQFjoFOCPylVK0ArDqbKj_-VvDJdP_1pqIBLBnv4-QBdTqVkHPttDrPN9z2wfh9ur9v-EG6179ehu2FG_yjXNCv4sAJbnJ3GbKML5dHJlnWdqOzdgQVE_Nddl_wFaa-z5g</recordid><startdate>199901</startdate><enddate>199901</enddate><creator>Plamondon, R.</creator><creator>Privitera, C.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>199901</creationdate><title>The segmentation of cursive handwriting: an approach based on off-line recovery of the motor-temporal information</title><author>Plamondon, R. ; Privitera, C.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-e900a40a7b80b4d48bc662d888ba9b2d2f67879b21c4d406a47a7d65e77812dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Angular velocity</topic><topic>Applied sciences</topic><topic>Computer science</topic><topic>Curvature</topic><topic>Exact sciences and technology</topic><topic>Graphics</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Information, signal and communications theory</topic><topic>Iris</topic><topic>Mathematical analysis</topic><topic>Movement</topic><topic>Nervous system</topic><topic>Process planning</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><topic>Temporal logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plamondon, R.</creatorcontrib><creatorcontrib>Privitera, C.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plamondon, R.</au><au>Privitera, C.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The segmentation of cursive handwriting: an approach based on off-line recovery of the motor-temporal information</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>1999-01</date><risdate>1999</risdate><volume>8</volume><issue>1</issue><spage>80</spage><epage>91</epage><pages>80-91</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper presents a segmentation method that partly mimics the cognitive-behavioral process used by human subjects to recover motor-temporal information from the image of a handwritten word. The approach does not exploit any thinning or skeletonization procedure, but rather a different type of information is manipulated concerning the curvature function of the word contour. In this way, it is possible to detect the parts of the image where the original odometric information is lost or ambiguous (such as, for example, at an intersection of the handwritten lines) and interpret them to finally recover a part of the original temporal information. The algorithm scans the word, following the natural course of the line, and attempts to reproduce the same movement as executed by the writer during the generation of the word. It segments the cursive trace where the contour shows the slow-down of the original movement (corresponding to the maximum curvature points of the curve). At the end of the scanning process, a temporal sequence of motor strokes is obtained which plausibly composed the original intended movement.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18262867</pmid><doi>10.1109/83.736691</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 1999-01, Vol.8 (1), p.80-91
issn 1057-7149
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_83_736691
source IEEE Xplore (Online service)
subjects Algorithms
Angular velocity
Applied sciences
Computer science
Curvature
Exact sciences and technology
Graphics
Humans
Image processing
Image segmentation
Information, signal and communications theory
Iris
Mathematical analysis
Movement
Nervous system
Process planning
Segmentation
Shape
Signal processing
Telecommunications and information theory
Temporal logic
title The segmentation of cursive handwriting: an approach based on off-line recovery of the motor-temporal information
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20segmentation%20of%20cursive%20handwriting:%20an%20approach%20based%20on%20off-line%20recovery%20of%20the%20motor-temporal%20information&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Plamondon,%20R.&rft.date=1999-01&rft.volume=8&rft.issue=1&rft.spage=80&rft.epage=91&rft.pages=80-91&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/83.736691&rft_dat=%3Cproquest_cross%3E919915742%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-e900a40a7b80b4d48bc662d888ba9b2d2f67879b21c4d406a47a7d65e77812dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27126017&rft_id=info:pmid/18262867&rft_ieee_id=736691&rfr_iscdi=true