Loading…
The segmentation of cursive handwriting: an approach based on off-line recovery of the motor-temporal information
This paper presents a segmentation method that partly mimics the cognitive-behavioral process used by human subjects to recover motor-temporal information from the image of a handwritten word. The approach does not exploit any thinning or skeletonization procedure, but rather a different type of inf...
Saved in:
Published in: | IEEE transactions on image processing 1999-01, Vol.8 (1), p.80-91 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c490t-e900a40a7b80b4d48bc662d888ba9b2d2f67879b21c4d406a47a7d65e77812dd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c490t-e900a40a7b80b4d48bc662d888ba9b2d2f67879b21c4d406a47a7d65e77812dd3 |
container_end_page | 91 |
container_issue | 1 |
container_start_page | 80 |
container_title | IEEE transactions on image processing |
container_volume | 8 |
creator | Plamondon, R. Privitera, C.M. |
description | This paper presents a segmentation method that partly mimics the cognitive-behavioral process used by human subjects to recover motor-temporal information from the image of a handwritten word. The approach does not exploit any thinning or skeletonization procedure, but rather a different type of information is manipulated concerning the curvature function of the word contour. In this way, it is possible to detect the parts of the image where the original odometric information is lost or ambiguous (such as, for example, at an intersection of the handwritten lines) and interpret them to finally recover a part of the original temporal information. The algorithm scans the word, following the natural course of the line, and attempts to reproduce the same movement as executed by the writer during the generation of the word. It segments the cursive trace where the contour shows the slow-down of the original movement (corresponding to the maximum curvature points of the curve). At the end of the scanning process, a temporal sequence of motor strokes is obtained which plausibly composed the original intended movement. |
doi_str_mv | 10.1109/83.736691 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_83_736691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>736691</ieee_id><sourcerecordid>919915742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-e900a40a7b80b4d48bc662d888ba9b2d2f67879b21c4d406a47a7d65e77812dd3</originalsourceid><addsrcrecordid>eNqF0T1vFDEQBmALgUgIFLQUyAUCUWzweL3-SIei8CFFogn1ymvP5ox27Yu9lyj_Hl9uRTpSeaR5PGP5JeQtsFMAZr7o9lS1Uhp4Ro7BCGgYE_x5rVmnGgXCHJFXpfxhDEQH8iU5As0l11Idk5urDdKC1zPGxS4hRZpG6na5hFukGxv9XQ5LiNdn1EZqt9ucrNvQwRb09AGPzRQi0owu3WK-319f6sg5LSk3C87blO1EQxxTnh8WvCYvRjsVfLOeJ-T3t4ur8x_N5a_vP8-_XjZOGLY0aBizglk1aDYIL_TgpOReaz1YM3DPR6m0qhW42mXSCmWVlx0qpYF7356QT4e59c03OyxLP4ficJpsxLQrvQFjoFOCPylVK0ArDqbKj_-VvDJdP_1pqIBLBnv4-QBdTqVkHPttDrPN9z2wfh9ur9v-EG6179ehu2FG_yjXNCv4sAJbnJ3GbKML5dHJlnWdqOzdgQVE_Nddl_wFaa-z5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27126017</pqid></control><display><type>article</type><title>The segmentation of cursive handwriting: an approach based on off-line recovery of the motor-temporal information</title><source>IEEE Xplore (Online service)</source><creator>Plamondon, R. ; Privitera, C.M.</creator><creatorcontrib>Plamondon, R. ; Privitera, C.M.</creatorcontrib><description>This paper presents a segmentation method that partly mimics the cognitive-behavioral process used by human subjects to recover motor-temporal information from the image of a handwritten word. The approach does not exploit any thinning or skeletonization procedure, but rather a different type of information is manipulated concerning the curvature function of the word contour. In this way, it is possible to detect the parts of the image where the original odometric information is lost or ambiguous (such as, for example, at an intersection of the handwritten lines) and interpret them to finally recover a part of the original temporal information. The algorithm scans the word, following the natural course of the line, and attempts to reproduce the same movement as executed by the writer during the generation of the word. It segments the cursive trace where the contour shows the slow-down of the original movement (corresponding to the maximum curvature points of the curve). At the end of the scanning process, a temporal sequence of motor strokes is obtained which plausibly composed the original intended movement.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/83.736691</identifier><identifier>PMID: 18262867</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Angular velocity ; Applied sciences ; Computer science ; Curvature ; Exact sciences and technology ; Graphics ; Humans ; Image processing ; Image segmentation ; Information, signal and communications theory ; Iris ; Mathematical analysis ; Movement ; Nervous system ; Process planning ; Segmentation ; Shape ; Signal processing ; Telecommunications and information theory ; Temporal logic</subject><ispartof>IEEE transactions on image processing, 1999-01, Vol.8 (1), p.80-91</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-e900a40a7b80b4d48bc662d888ba9b2d2f67879b21c4d406a47a7d65e77812dd3</citedby><cites>FETCH-LOGICAL-c490t-e900a40a7b80b4d48bc662d888ba9b2d2f67879b21c4d406a47a7d65e77812dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/736691$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,4012,27910,27911,27912,54783</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1630554$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18262867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Plamondon, R.</creatorcontrib><creatorcontrib>Privitera, C.M.</creatorcontrib><title>The segmentation of cursive handwriting: an approach based on off-line recovery of the motor-temporal information</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>This paper presents a segmentation method that partly mimics the cognitive-behavioral process used by human subjects to recover motor-temporal information from the image of a handwritten word. The approach does not exploit any thinning or skeletonization procedure, but rather a different type of information is manipulated concerning the curvature function of the word contour. In this way, it is possible to detect the parts of the image where the original odometric information is lost or ambiguous (such as, for example, at an intersection of the handwritten lines) and interpret them to finally recover a part of the original temporal information. The algorithm scans the word, following the natural course of the line, and attempts to reproduce the same movement as executed by the writer during the generation of the word. It segments the cursive trace where the contour shows the slow-down of the original movement (corresponding to the maximum curvature points of the curve). At the end of the scanning process, a temporal sequence of motor strokes is obtained which plausibly composed the original intended movement.</description><subject>Algorithms</subject><subject>Angular velocity</subject><subject>Applied sciences</subject><subject>Computer science</subject><subject>Curvature</subject><subject>Exact sciences and technology</subject><subject>Graphics</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Information, signal and communications theory</subject><subject>Iris</subject><subject>Mathematical analysis</subject><subject>Movement</subject><subject>Nervous system</subject><subject>Process planning</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><subject>Temporal logic</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqF0T1vFDEQBmALgUgIFLQUyAUCUWzweL3-SIei8CFFogn1ymvP5ox27Yu9lyj_Hl9uRTpSeaR5PGP5JeQtsFMAZr7o9lS1Uhp4Ro7BCGgYE_x5rVmnGgXCHJFXpfxhDEQH8iU5As0l11Idk5urDdKC1zPGxS4hRZpG6na5hFukGxv9XQ5LiNdn1EZqt9ucrNvQwRb09AGPzRQi0owu3WK-319f6sg5LSk3C87blO1EQxxTnh8WvCYvRjsVfLOeJ-T3t4ur8x_N5a_vP8-_XjZOGLY0aBizglk1aDYIL_TgpOReaz1YM3DPR6m0qhW42mXSCmWVlx0qpYF7356QT4e59c03OyxLP4ficJpsxLQrvQFjoFOCPylVK0ArDqbKj_-VvDJdP_1pqIBLBnv4-QBdTqVkHPttDrPN9z2wfh9ur9v-EG6179ehu2FG_yjXNCv4sAJbnJ3GbKML5dHJlnWdqOzdgQVE_Nddl_wFaa-z5g</recordid><startdate>199901</startdate><enddate>199901</enddate><creator>Plamondon, R.</creator><creator>Privitera, C.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>199901</creationdate><title>The segmentation of cursive handwriting: an approach based on off-line recovery of the motor-temporal information</title><author>Plamondon, R. ; Privitera, C.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-e900a40a7b80b4d48bc662d888ba9b2d2f67879b21c4d406a47a7d65e77812dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Angular velocity</topic><topic>Applied sciences</topic><topic>Computer science</topic><topic>Curvature</topic><topic>Exact sciences and technology</topic><topic>Graphics</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Information, signal and communications theory</topic><topic>Iris</topic><topic>Mathematical analysis</topic><topic>Movement</topic><topic>Nervous system</topic><topic>Process planning</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><topic>Temporal logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plamondon, R.</creatorcontrib><creatorcontrib>Privitera, C.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plamondon, R.</au><au>Privitera, C.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The segmentation of cursive handwriting: an approach based on off-line recovery of the motor-temporal information</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>1999-01</date><risdate>1999</risdate><volume>8</volume><issue>1</issue><spage>80</spage><epage>91</epage><pages>80-91</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper presents a segmentation method that partly mimics the cognitive-behavioral process used by human subjects to recover motor-temporal information from the image of a handwritten word. The approach does not exploit any thinning or skeletonization procedure, but rather a different type of information is manipulated concerning the curvature function of the word contour. In this way, it is possible to detect the parts of the image where the original odometric information is lost or ambiguous (such as, for example, at an intersection of the handwritten lines) and interpret them to finally recover a part of the original temporal information. The algorithm scans the word, following the natural course of the line, and attempts to reproduce the same movement as executed by the writer during the generation of the word. It segments the cursive trace where the contour shows the slow-down of the original movement (corresponding to the maximum curvature points of the curve). At the end of the scanning process, a temporal sequence of motor strokes is obtained which plausibly composed the original intended movement.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18262867</pmid><doi>10.1109/83.736691</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 1999-01, Vol.8 (1), p.80-91 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_83_736691 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Angular velocity Applied sciences Computer science Curvature Exact sciences and technology Graphics Humans Image processing Image segmentation Information, signal and communications theory Iris Mathematical analysis Movement Nervous system Process planning Segmentation Shape Signal processing Telecommunications and information theory Temporal logic |
title | The segmentation of cursive handwriting: an approach based on off-line recovery of the motor-temporal information |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20segmentation%20of%20cursive%20handwriting:%20an%20approach%20based%20on%20off-line%20recovery%20of%20the%20motor-temporal%20information&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Plamondon,%20R.&rft.date=1999-01&rft.volume=8&rft.issue=1&rft.spage=80&rft.epage=91&rft.pages=80-91&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/83.736691&rft_dat=%3Cproquest_cross%3E919915742%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-e900a40a7b80b4d48bc662d888ba9b2d2f67879b21c4d406a47a7d65e77812dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27126017&rft_id=info:pmid/18262867&rft_ieee_id=736691&rfr_iscdi=true |