Loading…

Electrostatic micromechanical actuator with extended range of travel

The practical design issues of an electrostatic micromechanical actuator that can travel beyond the trademark limit of conventional actuators are presented in this paper. The actuator employs a series capacitor to extend the effective electrical gap of the device and to provide stabilizing negative...

Full description

Saved in:
Bibliographic Details
Published in:Journal of microelectromechanical systems 2000-09, Vol.9 (3), p.321-328
Main Authors: Chan, E.K., Dutton, R.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c432t-c9b947a5f2af8fb80241ad61022d4b540ae2c946efddf431e3ac6a3cba9c72003
cites cdi_FETCH-LOGICAL-c432t-c9b947a5f2af8fb80241ad61022d4b540ae2c946efddf431e3ac6a3cba9c72003
container_end_page 328
container_issue 3
container_start_page 321
container_title Journal of microelectromechanical systems
container_volume 9
creator Chan, E.K.
Dutton, R.W.
description The practical design issues of an electrostatic micromechanical actuator that can travel beyond the trademark limit of conventional actuators are presented in this paper. The actuator employs a series capacitor to extend the effective electrical gap of the device and to provide stabilizing negative feedback. Sources of parasitics-from layout and two-dimensional nonuniform deformation-that limit the actuation range are identified and their effects quantified. Two "folded capacitor" designs that minimize the parasitics and are straightforward to implement in multiuser microelectromechanical processes are introduced. The effects of residual charge are analyzed, and a linear electrostatic actuator exploiting those effects is proposed. Extended travel is achieved in fabricated devices, but is ultimately limited by tilting instabilities. Nevertheless, the resultant designs are smaller than devices based on other extended-travel technologies, making them attractive for applications that require high fill factors.
doi_str_mv 10.1109/84.870058
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_84_870058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>870058</ieee_id><sourcerecordid>746240001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-c9b947a5f2af8fb80241ad61022d4b540ae2c946efddf431e3ac6a3cba9c72003</originalsourceid><addsrcrecordid>eNqFkctLxDAQh4souD4OXj0VEcVDNUmnTXKUdX2A4EXPZTaduF267ZqkPv57I7soeNDTBObLb5hvkuSAs3POmb5QcK4kY4XaSEZcA88YL9RmfLNCZpIXcjvZ8X7OGAdQ5Si5mrRkgut9wNCYdNEY1y_IzLBrDLYpmjBg6F361oRZSu-Buprq1GH3TGlv0-Dwldq9ZMti62l_XXeTp-vJ4_g2u3-4uRtf3mcGchEyo6caJBZWoFV2qpgAjnXJmRA1TAtgSMJoKMnWtYWcU46mxNxMURspGMt3k9NV7tL1LwP5UC0ab6htsaN-8JXmUBalVPAvKaEUwKKFSJ78SQqVc6W1jODRL3DeD66L-8a5Wuu4YhmhsxUUNXrvyFZL1yzQfVScVV8HqhRUqwNF9ngdiD66tlGqafzPB5DR1tfcwxXWENF3d53xCRdJlts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919994326</pqid></control><display><type>article</type><title>Electrostatic micromechanical actuator with extended range of travel</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chan, E.K. ; Dutton, R.W.</creator><creatorcontrib>Chan, E.K. ; Dutton, R.W.</creatorcontrib><description>The practical design issues of an electrostatic micromechanical actuator that can travel beyond the trademark limit of conventional actuators are presented in this paper. The actuator employs a series capacitor to extend the effective electrical gap of the device and to provide stabilizing negative feedback. Sources of parasitics-from layout and two-dimensional nonuniform deformation-that limit the actuation range are identified and their effects quantified. Two "folded capacitor" designs that minimize the parasitics and are straightforward to implement in multiuser microelectromechanical processes are introduced. The effects of residual charge are analyzed, and a linear electrostatic actuator exploiting those effects is proposed. Extended travel is achieved in fabricated devices, but is ultimately limited by tilting instabilities. Nevertheless, the resultant designs are smaller than devices based on other extended-travel technologies, making them attractive for applications that require high fill factors.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/84.870058</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actuators ; Applied sciences ; Capacitance ; Capacitors ; Deformation effects ; Design engineering ; Devices ; Electrostatic actuators ; Electrostatic analysis ; Electrostatics ; Exact sciences and technology ; Feedback control ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Laser feedback ; Mechanical engineering. Machine design ; Microactuators ; Micromechanical devices ; Negative feedback ; Performance analysis ; Physics ; Precision engineering, watch making ; System stability ; Trademarks ; Transducers ; Voltage control</subject><ispartof>Journal of microelectromechanical systems, 2000-09, Vol.9 (3), p.321-328</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-c9b947a5f2af8fb80241ad61022d4b540ae2c946efddf431e3ac6a3cba9c72003</citedby><cites>FETCH-LOGICAL-c432t-c9b947a5f2af8fb80241ad61022d4b540ae2c946efddf431e3ac6a3cba9c72003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/870058$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1479477$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chan, E.K.</creatorcontrib><creatorcontrib>Dutton, R.W.</creatorcontrib><title>Electrostatic micromechanical actuator with extended range of travel</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>The practical design issues of an electrostatic micromechanical actuator that can travel beyond the trademark limit of conventional actuators are presented in this paper. The actuator employs a series capacitor to extend the effective electrical gap of the device and to provide stabilizing negative feedback. Sources of parasitics-from layout and two-dimensional nonuniform deformation-that limit the actuation range are identified and their effects quantified. Two "folded capacitor" designs that minimize the parasitics and are straightforward to implement in multiuser microelectromechanical processes are introduced. The effects of residual charge are analyzed, and a linear electrostatic actuator exploiting those effects is proposed. Extended travel is achieved in fabricated devices, but is ultimately limited by tilting instabilities. Nevertheless, the resultant designs are smaller than devices based on other extended-travel technologies, making them attractive for applications that require high fill factors.</description><subject>Actuators</subject><subject>Applied sciences</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Deformation effects</subject><subject>Design engineering</subject><subject>Devices</subject><subject>Electrostatic actuators</subject><subject>Electrostatic analysis</subject><subject>Electrostatics</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Laser feedback</subject><subject>Mechanical engineering. Machine design</subject><subject>Microactuators</subject><subject>Micromechanical devices</subject><subject>Negative feedback</subject><subject>Performance analysis</subject><subject>Physics</subject><subject>Precision engineering, watch making</subject><subject>System stability</subject><subject>Trademarks</subject><subject>Transducers</subject><subject>Voltage control</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkctLxDAQh4souD4OXj0VEcVDNUmnTXKUdX2A4EXPZTaduF267ZqkPv57I7soeNDTBObLb5hvkuSAs3POmb5QcK4kY4XaSEZcA88YL9RmfLNCZpIXcjvZ8X7OGAdQ5Si5mrRkgut9wNCYdNEY1y_IzLBrDLYpmjBg6F361oRZSu-Buprq1GH3TGlv0-Dwldq9ZMti62l_XXeTp-vJ4_g2u3-4uRtf3mcGchEyo6caJBZWoFV2qpgAjnXJmRA1TAtgSMJoKMnWtYWcU46mxNxMURspGMt3k9NV7tL1LwP5UC0ab6htsaN-8JXmUBalVPAvKaEUwKKFSJ78SQqVc6W1jODRL3DeD66L-8a5Wuu4YhmhsxUUNXrvyFZL1yzQfVScVV8HqhRUqwNF9ngdiD66tlGqafzPB5DR1tfcwxXWENF3d53xCRdJlts</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>Chan, E.K.</creator><creator>Dutton, R.W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7TC</scope><scope>F28</scope></search><sort><creationdate>20000901</creationdate><title>Electrostatic micromechanical actuator with extended range of travel</title><author>Chan, E.K. ; Dutton, R.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-c9b947a5f2af8fb80241ad61022d4b540ae2c946efddf431e3ac6a3cba9c72003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Actuators</topic><topic>Applied sciences</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Deformation effects</topic><topic>Design engineering</topic><topic>Devices</topic><topic>Electrostatic actuators</topic><topic>Electrostatic analysis</topic><topic>Electrostatics</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Laser feedback</topic><topic>Mechanical engineering. Machine design</topic><topic>Microactuators</topic><topic>Micromechanical devices</topic><topic>Negative feedback</topic><topic>Performance analysis</topic><topic>Physics</topic><topic>Precision engineering, watch making</topic><topic>System stability</topic><topic>Trademarks</topic><topic>Transducers</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, E.K.</creatorcontrib><creatorcontrib>Dutton, R.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore Digital Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, E.K.</au><au>Dutton, R.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic micromechanical actuator with extended range of travel</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2000-09-01</date><risdate>2000</risdate><volume>9</volume><issue>3</issue><spage>321</spage><epage>328</epage><pages>321-328</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>The practical design issues of an electrostatic micromechanical actuator that can travel beyond the trademark limit of conventional actuators are presented in this paper. The actuator employs a series capacitor to extend the effective electrical gap of the device and to provide stabilizing negative feedback. Sources of parasitics-from layout and two-dimensional nonuniform deformation-that limit the actuation range are identified and their effects quantified. Two "folded capacitor" designs that minimize the parasitics and are straightforward to implement in multiuser microelectromechanical processes are introduced. The effects of residual charge are analyzed, and a linear electrostatic actuator exploiting those effects is proposed. Extended travel is achieved in fabricated devices, but is ultimately limited by tilting instabilities. Nevertheless, the resultant designs are smaller than devices based on other extended-travel technologies, making them attractive for applications that require high fill factors.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/84.870058</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2000-09, Vol.9 (3), p.321-328
issn 1057-7157
1941-0158
language eng
recordid cdi_crossref_primary_10_1109_84_870058
source IEEE Electronic Library (IEL) Journals
subjects Actuators
Applied sciences
Capacitance
Capacitors
Deformation effects
Design engineering
Devices
Electrostatic actuators
Electrostatic analysis
Electrostatics
Exact sciences and technology
Feedback control
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Laser feedback
Mechanical engineering. Machine design
Microactuators
Micromechanical devices
Negative feedback
Performance analysis
Physics
Precision engineering, watch making
System stability
Trademarks
Transducers
Voltage control
title Electrostatic micromechanical actuator with extended range of travel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20micromechanical%20actuator%20with%20extended%20range%20of%20travel&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Chan,%20E.K.&rft.date=2000-09-01&rft.volume=9&rft.issue=3&rft.spage=321&rft.epage=328&rft.pages=321-328&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/84.870058&rft_dat=%3Cproquest_cross%3E746240001%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432t-c9b947a5f2af8fb80241ad61022d4b540ae2c946efddf431e3ac6a3cba9c72003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919994326&rft_id=info:pmid/&rft_ieee_id=870058&rfr_iscdi=true