Loading…
Electrostatic micromechanical actuator with extended range of travel
The practical design issues of an electrostatic micromechanical actuator that can travel beyond the trademark limit of conventional actuators are presented in this paper. The actuator employs a series capacitor to extend the effective electrical gap of the device and to provide stabilizing negative...
Saved in:
Published in: | Journal of microelectromechanical systems 2000-09, Vol.9 (3), p.321-328 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c432t-c9b947a5f2af8fb80241ad61022d4b540ae2c946efddf431e3ac6a3cba9c72003 |
---|---|
cites | cdi_FETCH-LOGICAL-c432t-c9b947a5f2af8fb80241ad61022d4b540ae2c946efddf431e3ac6a3cba9c72003 |
container_end_page | 328 |
container_issue | 3 |
container_start_page | 321 |
container_title | Journal of microelectromechanical systems |
container_volume | 9 |
creator | Chan, E.K. Dutton, R.W. |
description | The practical design issues of an electrostatic micromechanical actuator that can travel beyond the trademark limit of conventional actuators are presented in this paper. The actuator employs a series capacitor to extend the effective electrical gap of the device and to provide stabilizing negative feedback. Sources of parasitics-from layout and two-dimensional nonuniform deformation-that limit the actuation range are identified and their effects quantified. Two "folded capacitor" designs that minimize the parasitics and are straightforward to implement in multiuser microelectromechanical processes are introduced. The effects of residual charge are analyzed, and a linear electrostatic actuator exploiting those effects is proposed. Extended travel is achieved in fabricated devices, but is ultimately limited by tilting instabilities. Nevertheless, the resultant designs are smaller than devices based on other extended-travel technologies, making them attractive for applications that require high fill factors. |
doi_str_mv | 10.1109/84.870058 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_84_870058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>870058</ieee_id><sourcerecordid>746240001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-c9b947a5f2af8fb80241ad61022d4b540ae2c946efddf431e3ac6a3cba9c72003</originalsourceid><addsrcrecordid>eNqFkctLxDAQh4souD4OXj0VEcVDNUmnTXKUdX2A4EXPZTaduF267ZqkPv57I7soeNDTBObLb5hvkuSAs3POmb5QcK4kY4XaSEZcA88YL9RmfLNCZpIXcjvZ8X7OGAdQ5Si5mrRkgut9wNCYdNEY1y_IzLBrDLYpmjBg6F361oRZSu-Buprq1GH3TGlv0-Dwldq9ZMti62l_XXeTp-vJ4_g2u3-4uRtf3mcGchEyo6caJBZWoFV2qpgAjnXJmRA1TAtgSMJoKMnWtYWcU46mxNxMURspGMt3k9NV7tL1LwP5UC0ab6htsaN-8JXmUBalVPAvKaEUwKKFSJ78SQqVc6W1jODRL3DeD66L-8a5Wuu4YhmhsxUUNXrvyFZL1yzQfVScVV8HqhRUqwNF9ngdiD66tlGqafzPB5DR1tfcwxXWENF3d53xCRdJlts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919994326</pqid></control><display><type>article</type><title>Electrostatic micromechanical actuator with extended range of travel</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chan, E.K. ; Dutton, R.W.</creator><creatorcontrib>Chan, E.K. ; Dutton, R.W.</creatorcontrib><description>The practical design issues of an electrostatic micromechanical actuator that can travel beyond the trademark limit of conventional actuators are presented in this paper. The actuator employs a series capacitor to extend the effective electrical gap of the device and to provide stabilizing negative feedback. Sources of parasitics-from layout and two-dimensional nonuniform deformation-that limit the actuation range are identified and their effects quantified. Two "folded capacitor" designs that minimize the parasitics and are straightforward to implement in multiuser microelectromechanical processes are introduced. The effects of residual charge are analyzed, and a linear electrostatic actuator exploiting those effects is proposed. Extended travel is achieved in fabricated devices, but is ultimately limited by tilting instabilities. Nevertheless, the resultant designs are smaller than devices based on other extended-travel technologies, making them attractive for applications that require high fill factors.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/84.870058</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actuators ; Applied sciences ; Capacitance ; Capacitors ; Deformation effects ; Design engineering ; Devices ; Electrostatic actuators ; Electrostatic analysis ; Electrostatics ; Exact sciences and technology ; Feedback control ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Laser feedback ; Mechanical engineering. Machine design ; Microactuators ; Micromechanical devices ; Negative feedback ; Performance analysis ; Physics ; Precision engineering, watch making ; System stability ; Trademarks ; Transducers ; Voltage control</subject><ispartof>Journal of microelectromechanical systems, 2000-09, Vol.9 (3), p.321-328</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-c9b947a5f2af8fb80241ad61022d4b540ae2c946efddf431e3ac6a3cba9c72003</citedby><cites>FETCH-LOGICAL-c432t-c9b947a5f2af8fb80241ad61022d4b540ae2c946efddf431e3ac6a3cba9c72003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/870058$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1479477$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chan, E.K.</creatorcontrib><creatorcontrib>Dutton, R.W.</creatorcontrib><title>Electrostatic micromechanical actuator with extended range of travel</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>The practical design issues of an electrostatic micromechanical actuator that can travel beyond the trademark limit of conventional actuators are presented in this paper. The actuator employs a series capacitor to extend the effective electrical gap of the device and to provide stabilizing negative feedback. Sources of parasitics-from layout and two-dimensional nonuniform deformation-that limit the actuation range are identified and their effects quantified. Two "folded capacitor" designs that minimize the parasitics and are straightforward to implement in multiuser microelectromechanical processes are introduced. The effects of residual charge are analyzed, and a linear electrostatic actuator exploiting those effects is proposed. Extended travel is achieved in fabricated devices, but is ultimately limited by tilting instabilities. Nevertheless, the resultant designs are smaller than devices based on other extended-travel technologies, making them attractive for applications that require high fill factors.</description><subject>Actuators</subject><subject>Applied sciences</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Deformation effects</subject><subject>Design engineering</subject><subject>Devices</subject><subject>Electrostatic actuators</subject><subject>Electrostatic analysis</subject><subject>Electrostatics</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Laser feedback</subject><subject>Mechanical engineering. Machine design</subject><subject>Microactuators</subject><subject>Micromechanical devices</subject><subject>Negative feedback</subject><subject>Performance analysis</subject><subject>Physics</subject><subject>Precision engineering, watch making</subject><subject>System stability</subject><subject>Trademarks</subject><subject>Transducers</subject><subject>Voltage control</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkctLxDAQh4souD4OXj0VEcVDNUmnTXKUdX2A4EXPZTaduF267ZqkPv57I7soeNDTBObLb5hvkuSAs3POmb5QcK4kY4XaSEZcA88YL9RmfLNCZpIXcjvZ8X7OGAdQ5Si5mrRkgut9wNCYdNEY1y_IzLBrDLYpmjBg6F361oRZSu-Buprq1GH3TGlv0-Dwldq9ZMti62l_XXeTp-vJ4_g2u3-4uRtf3mcGchEyo6caJBZWoFV2qpgAjnXJmRA1TAtgSMJoKMnWtYWcU46mxNxMURspGMt3k9NV7tL1LwP5UC0ab6htsaN-8JXmUBalVPAvKaEUwKKFSJ78SQqVc6W1jODRL3DeD66L-8a5Wuu4YhmhsxUUNXrvyFZL1yzQfVScVV8HqhRUqwNF9ngdiD66tlGqafzPB5DR1tfcwxXWENF3d53xCRdJlts</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>Chan, E.K.</creator><creator>Dutton, R.W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7TC</scope><scope>F28</scope></search><sort><creationdate>20000901</creationdate><title>Electrostatic micromechanical actuator with extended range of travel</title><author>Chan, E.K. ; Dutton, R.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-c9b947a5f2af8fb80241ad61022d4b540ae2c946efddf431e3ac6a3cba9c72003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Actuators</topic><topic>Applied sciences</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Deformation effects</topic><topic>Design engineering</topic><topic>Devices</topic><topic>Electrostatic actuators</topic><topic>Electrostatic analysis</topic><topic>Electrostatics</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Laser feedback</topic><topic>Mechanical engineering. Machine design</topic><topic>Microactuators</topic><topic>Micromechanical devices</topic><topic>Negative feedback</topic><topic>Performance analysis</topic><topic>Physics</topic><topic>Precision engineering, watch making</topic><topic>System stability</topic><topic>Trademarks</topic><topic>Transducers</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, E.K.</creatorcontrib><creatorcontrib>Dutton, R.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore Digital Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, E.K.</au><au>Dutton, R.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic micromechanical actuator with extended range of travel</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2000-09-01</date><risdate>2000</risdate><volume>9</volume><issue>3</issue><spage>321</spage><epage>328</epage><pages>321-328</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>The practical design issues of an electrostatic micromechanical actuator that can travel beyond the trademark limit of conventional actuators are presented in this paper. The actuator employs a series capacitor to extend the effective electrical gap of the device and to provide stabilizing negative feedback. Sources of parasitics-from layout and two-dimensional nonuniform deformation-that limit the actuation range are identified and their effects quantified. Two "folded capacitor" designs that minimize the parasitics and are straightforward to implement in multiuser microelectromechanical processes are introduced. The effects of residual charge are analyzed, and a linear electrostatic actuator exploiting those effects is proposed. Extended travel is achieved in fabricated devices, but is ultimately limited by tilting instabilities. Nevertheless, the resultant designs are smaller than devices based on other extended-travel technologies, making them attractive for applications that require high fill factors.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/84.870058</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2000-09, Vol.9 (3), p.321-328 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_crossref_primary_10_1109_84_870058 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Actuators Applied sciences Capacitance Capacitors Deformation effects Design engineering Devices Electrostatic actuators Electrostatic analysis Electrostatics Exact sciences and technology Feedback control General equipment and techniques Instruments, apparatus, components and techniques common to several branches of physics and astronomy Laser feedback Mechanical engineering. Machine design Microactuators Micromechanical devices Negative feedback Performance analysis Physics Precision engineering, watch making System stability Trademarks Transducers Voltage control |
title | Electrostatic micromechanical actuator with extended range of travel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20micromechanical%20actuator%20with%20extended%20range%20of%20travel&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Chan,%20E.K.&rft.date=2000-09-01&rft.volume=9&rft.issue=3&rft.spage=321&rft.epage=328&rft.pages=321-328&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/84.870058&rft_dat=%3Cproquest_cross%3E746240001%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432t-c9b947a5f2af8fb80241ad61022d4b540ae2c946efddf431e3ac6a3cba9c72003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919994326&rft_id=info:pmid/&rft_ieee_id=870058&rfr_iscdi=true |